MW 5x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010087
GTIN/EAN: 5906301810865
Średnica Ø
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.84 kg / 8.25 N
Indukcja magnetyczna
475.16 mT / 4752 Gs
Powłoka
[NiCuNi] nikiel
0.283 ZŁ z VAT / szt. + cena za transport
0.230 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie pisz korzystając z
formularz
na stronie kontakt.
Masę a także wygląd magnesu sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 5x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 5x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010087 |
| GTIN/EAN | 5906301810865 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.84 kg / 8.25 N |
| Indukcja magnetyczna ~ ? | 475.16 mT / 4752 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - raport
Niniejsze wartości stanowią rezultat kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.
MW 5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4745 Gs
474.5 mT
|
0.84 kg / 840.0 g
8.2 N
|
słaby uchwyt |
| 1 mm |
2955 Gs
295.5 mT
|
0.33 kg / 325.8 g
3.2 N
|
słaby uchwyt |
| 2 mm |
1672 Gs
167.2 mT
|
0.10 kg / 104.4 g
1.0 N
|
słaby uchwyt |
| 3 mm |
960 Gs
96.0 mT
|
0.03 kg / 34.4 g
0.3 N
|
słaby uchwyt |
| 5 mm |
372 Gs
37.2 mT
|
0.01 kg / 5.2 g
0.1 N
|
słaby uchwyt |
| 10 mm |
74 Gs
7.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 15 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 252.0 g
2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 168.0 g
1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 84.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 420.0 g
4.1 N
|
MW 5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 84.0 g
0.8 N
|
| 1 mm |
|
0.21 kg / 210.0 g
2.1 N
|
| 2 mm |
|
0.42 kg / 420.0 g
4.1 N
|
| 5 mm |
|
0.84 kg / 840.0 g
8.2 N
|
| 10 mm |
|
0.84 kg / 840.0 g
8.2 N
|
MW 5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 840.0 g
8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 821.5 g
8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 803.0 g
7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 784.6 g
7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 598.1 g
5.9 N
|
MW 5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.73 kg / 2725 g
26.7 N
5 700 Gs
|
N/A |
| 1 mm |
1.77 kg / 1775 g
17.4 N
7 658 Gs
|
1.60 kg / 1597 g
15.7 N
~0 Gs
|
| 2 mm |
1.06 kg / 1057 g
10.4 N
5 910 Gs
|
0.95 kg / 951 g
9.3 N
~0 Gs
|
| 3 mm |
0.60 kg / 602 g
5.9 N
4 460 Gs
|
0.54 kg / 542 g
5.3 N
~0 Gs
|
| 5 mm |
0.19 kg / 192 g
1.9 N
2 520 Gs
|
0.17 kg / 173 g
1.7 N
~0 Gs
|
| 10 mm |
0.02 kg / 17 g
0.2 N
745 Gs
|
0.02 kg / 15 g
0.1 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
147 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
12 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
44.07 km/h
(12.24 m/s)
|
0.03 J | |
| 30 mm |
76.32 km/h
(21.20 m/s)
|
0.10 J | |
| 50 mm |
98.53 km/h
(27.37 m/s)
|
0.16 J | |
| 100 mm |
139.35 km/h
(38.71 m/s)
|
0.33 J |
MW 5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 942 Mx | 9.4 µWb |
| Współczynnik Pc | 0.66 | Wysoki (Stabilny) |
MW 5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.84 kg | Standard |
| Woda (dno rzeki) |
0.96 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) zyskują nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- z zastosowaniem blachy ze miękkiej stali, działającej jako element zamykający obwód
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje udźwig.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko pożaru
Proszek powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Karty i dyski
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Nie lekceważ mocy
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Niebezpieczeństwo dla rozruszników
Osoby z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Maksymalna temperatura
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Alergia na nikiel
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Chronić przed dziećmi
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
