Neodymy – szeroki wybór kształtów

Szukasz potężnej mocy w małym rozmiarze? Posiadamy w sprzedaży bogatą gamę magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do użytku w domu, garażu oraz zadań przemysłowych. Sprawdź naszą ofertę z szybką wysyłką.

sprawdź katalog magnesów

Magnet fishing: mocne zestawy F200/F400

Zacznij swoje hobby polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Nierdzewna konstrukcja oraz wzmocnione liny sprawdzą się w rzekach i jeziorach.

wybierz swój magnes do wody

Profesjonalne uchwyty z gwintem

Sprawdzone rozwiązania do mocowania bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy instalacji oświetlenia, czujników oraz banerów.

zobacz dostępne gwinty

🚚 Zamów do 14:00 – wyślemy tego samego dnia!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 5x3 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010087

GTIN/EAN: 5906301810865

5.00

Średnica Ø

5 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

0.44 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.84 kg / 8.25 N

Indukcja magnetyczna

475.16 mT / 4752 Gs

Powłoka

[NiCuNi] nikiel

0.283 z VAT / szt. + cena za transport

0.230 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.230 ZŁ
0.283 ZŁ
cena od 2700 szt.
0.216 ZŁ
0.266 ZŁ
cena od 10900 szt.
0.202 ZŁ
0.249 ZŁ
Nie jesteś pewien wyboru?

Zadzwoń i zapytaj +48 888 99 98 98 alternatywnie pisz poprzez formularz kontaktowy w sekcji kontakt.
Właściwości i kształt magnesu neodymowego zweryfikujesz u nas w narzędziu online do obliczeń.

Zamów do 14:00, a wyślemy dziś!

Właściwości fizyczne MW 5x3 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 5x3 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010087
GTIN/EAN 5906301810865
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 5 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 0.44 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.84 kg / 8.25 N
Indukcja magnetyczna ~ ? 475.16 mT / 4752 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 5x3 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu - parametry techniczne

Niniejsze informacje stanowią bezpośredni efekt analizy inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 5x3 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 4745 Gs
474.5 mT
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
bezpieczny
1 mm 2955 Gs
295.5 mT
0.33 kg / 0.72 lbs
325.8 g / 3.2 N
bezpieczny
2 mm 1672 Gs
167.2 mT
0.10 kg / 0.23 lbs
104.4 g / 1.0 N
bezpieczny
3 mm 960 Gs
96.0 mT
0.03 kg / 0.08 lbs
34.4 g / 0.3 N
bezpieczny
5 mm 372 Gs
37.2 mT
0.01 kg / 0.01 lbs
5.2 g / 0.1 N
bezpieczny
10 mm 74 Gs
7.4 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
bezpieczny
15 mm 25 Gs
2.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
20 mm 12 Gs
1.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
30 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa ześlizgu (pion)
MW 5x3 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.17 kg / 0.37 lbs
168.0 g / 1.6 N
1 mm Stal (~0.2) 0.07 kg / 0.15 lbs
66.0 g / 0.6 N
2 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
3 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 5x3 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.25 kg / 0.56 lbs
252.0 g / 2.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.42 kg / 0.93 lbs
420.0 g / 4.1 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 5x3 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
1 mm
25%
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
2 mm
50%
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
3 mm
75%
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
5 mm
100%
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
10 mm
100%
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
11 mm
100%
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
12 mm
100%
0.84 kg / 1.85 lbs
840.0 g / 8.2 N

Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 5x3 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.84 kg / 1.85 lbs
840.0 g / 8.2 N
OK
40 °C -2.2% 0.82 kg / 1.81 lbs
821.5 g / 8.1 N
OK
60 °C -4.4% 0.80 kg / 1.77 lbs
803.0 g / 7.9 N
OK
80 °C -6.6% 0.78 kg / 1.73 lbs
784.6 g / 7.7 N
100 °C -28.8% 0.60 kg / 1.32 lbs
598.1 g / 5.9 N

Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 5x3 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.73 kg / 6.01 lbs
5 700 Gs
0.41 kg / 0.90 lbs
409 g / 4.0 N
N/A
1 mm 1.77 kg / 3.91 lbs
7 658 Gs
0.27 kg / 0.59 lbs
266 g / 2.6 N
1.60 kg / 3.52 lbs
~0 Gs
2 mm 1.06 kg / 2.33 lbs
5 910 Gs
0.16 kg / 0.35 lbs
159 g / 1.6 N
0.95 kg / 2.10 lbs
~0 Gs
3 mm 0.60 kg / 1.33 lbs
4 460 Gs
0.09 kg / 0.20 lbs
90 g / 0.9 N
0.54 kg / 1.19 lbs
~0 Gs
5 mm 0.19 kg / 0.42 lbs
2 520 Gs
0.03 kg / 0.06 lbs
29 g / 0.3 N
0.17 kg / 0.38 lbs
~0 Gs
10 mm 0.02 kg / 0.04 lbs
745 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.03 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
147 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 5x3 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Immobilizer 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 5x3 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 44.07 km/h
(12.24 m/s)
0.03 J
30 mm 76.32 km/h
(21.20 m/s)
0.10 J
50 mm 98.53 km/h
(27.37 m/s)
0.16 J
100 mm 139.35 km/h
(38.71 m/s)
0.33 J

Tabela 9: Parametry powłoki (trwałość)
MW 5x3 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 5x3 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 942 Mx 9.4 µWb
Współczynnik Pc 0.66 Wysoki (Stabilny)

Tabela 11: Hydrostatyka i wyporność
MW 5x3 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.84 kg Standard
Woda (dno rzeki) 0.96 kg
(+0.12 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Ześlizg (ściana)

*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.

2. Grubość podłoża

*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.

3. Wytrzymałość temperaturowa

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010087-2026
Szybki konwerter jednostek
Siła oderwania

Indukcja magnetyczna

Sprawdź inne oferty

Prezentowany produkt to wyjątkowo silny magnes w kształcie walca, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø5x3 mm gwarantuje najwyższą gęstość energii. Komponent MW 5x3 / N38 cechuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 0.84 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 8.25 N przy wadze zaledwie 0.44 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na delikatną strukturę spieku ceramicznego, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się żywice anaerobowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są odpowiednie do 90% zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø5x3), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø5x3 mm, co przy wadze 0.44 g czyni go elementem o wysokiej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 0.84 kg (siła ~8.25 N), co przy tak określonych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 3 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety oraz wady magnesów z neodymu Nd2Fe14B.

Zalety

Należy pamiętać, iż obok wysokiej siły, produkty te cechują się następującymi plusami:
  • Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (teoretycznie).
  • Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
  • Dzięki powłoce (nikiel, Au, Ag) zyskują nowoczesny, metaliczny wygląd.
  • Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
  • Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
  • Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.

Słabe strony

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.

Analiza siły trzymania

Maksymalny udźwig magnesuod czego zależy?

Wartość udźwigu podana w specyfikacji dotyczy wartości maksymalnej, którą uzyskano w idealnych warunkach testowych, czyli:
  • z zastosowaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
  • posiadającej masywność min. 10 mm aby uniknąć nasycenia
  • charakteryzującej się równą strukturą
  • w warunkach idealnego przylegania (powierzchnia do powierzchni)
  • przy osiowym wektorze siły (kąt 90 stopni)
  • przy temperaturze otoczenia pokojowej

Co wpływa na udźwig w praktyce

W praktyce, rzeczywisty udźwig wynika z wielu zmiennych, uszeregowanych od najbardziej istotnych:
  • Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
  • Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.

Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.

Instrukcja bezpiecznej obsługi magnesów
Ogromna siła

Używaj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.

Wpływ na zdrowie

Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie implantu.

Ryzyko pęknięcia

Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.

Zagrożenie zapłonem

Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.

Niklowa powłoka a alergia

Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.

Interferencja magnetyczna

Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.

Bezpieczny dystans

Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).

Ryzyko zmiażdżenia

Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.

Zagrożenie dla najmłodszych

Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.

Utrata mocy w cieple

Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.

Zachowaj ostrożność! Więcej informacji o zagrożeniach w artykule: Niebezpieczne magnesy.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98