MW 5x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010087
GTIN: 5906301810865
Średnica Ø
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.84 kg / 8.25 N
Indukcja magnetyczna
475.16 mT / 4752 Gs
Powłoka
[NiCuNi] nikiel
0.283 ZŁ z VAT / szt. + cena za transport
0.230 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz jaki magnes kupić?
Dzwoń do nas
+48 22 499 98 98
albo pisz poprzez
nasz formularz online
na stronie kontakt.
Masę i budowę magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 5x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 5x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010087 |
| GTIN | 5906301810865 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.84 kg / 8.25 N |
| Indukcja magnetyczna ~ ? | 475.16 mT / 4752 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane stanowią wynik analizy matematycznej. Wartości bazują na algorytmach dla materiału NdFeB. Realne osiągi mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
MW 5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4745 Gs
474.5 mT
|
0.84 kg / 840.0 g
8.2 N
|
bezpieczny |
| 1 mm |
2955 Gs
295.5 mT
|
0.33 kg / 325.8 g
3.2 N
|
bezpieczny |
| 2 mm |
1672 Gs
167.2 mT
|
0.10 kg / 104.4 g
1.0 N
|
bezpieczny |
| 3 mm |
960 Gs
96.0 mT
|
0.03 kg / 34.4 g
0.3 N
|
bezpieczny |
| 5 mm |
372 Gs
37.2 mT
|
0.01 kg / 5.2 g
0.1 N
|
bezpieczny |
| 10 mm |
74 Gs
7.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 15 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 252.0 g
2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 168.0 g
1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 84.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 420.0 g
4.1 N
|
MW 5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 84.0 g
0.8 N
|
| 1 mm |
|
0.21 kg / 210.0 g
2.1 N
|
| 2 mm |
|
0.42 kg / 420.0 g
4.1 N
|
| 5 mm |
|
0.84 kg / 840.0 g
8.2 N
|
| 10 mm |
|
0.84 kg / 840.0 g
8.2 N
|
MW 5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 840.0 g
8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 821.5 g
8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 803.0 g
7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 784.6 g
7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 598.1 g
5.9 N
|
MW 5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.73 kg / 2725 g
26.7 N
5 700 Gs
|
N/A |
| 1 mm |
1.77 kg / 1775 g
17.4 N
7 658 Gs
|
1.60 kg / 1597 g
15.7 N
~0 Gs
|
| 2 mm |
1.06 kg / 1057 g
10.4 N
5 910 Gs
|
0.95 kg / 951 g
9.3 N
~0 Gs
|
| 3 mm |
0.60 kg / 602 g
5.9 N
4 460 Gs
|
0.54 kg / 542 g
5.3 N
~0 Gs
|
| 5 mm |
0.19 kg / 192 g
1.9 N
2 520 Gs
|
0.17 kg / 173 g
1.7 N
~0 Gs
|
| 10 mm |
0.02 kg / 17 g
0.2 N
745 Gs
|
0.02 kg / 15 g
0.1 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
147 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
12 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
44.07 km/h
(12.24 m/s)
|
0.03 J | |
| 30 mm |
76.32 km/h
(21.20 m/s)
|
0.10 J | |
| 50 mm |
98.53 km/h
(27.37 m/s)
|
0.16 J | |
| 100 mm |
139.35 km/h
(38.71 m/s)
|
0.33 J |
MW 5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 942 Mx | 9.4 µWb |
| Współczynnik Pc | 0.66 | Wysoki (Stabilny) |
MW 5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.84 kg | Standard |
| Woda (dno rzeki) |
0.96 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne propozycje
Wady i zalety magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, produkty te wyróżniają się następującymi zaletami:
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Warto znać też słabe strony magnesów neodymowych:
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Siła oderwania to rezultat pomiaru dla optymalnej konfiguracji, zakładającej:
- przy kontakcie z blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- z płaszczyzną idealnie równą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
Podczas codziennego użytkowania, faktyczna siła trzymania zależy od wielu zmiennych, wymienionych od najważniejszych:
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
* Udźwig określano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Wady i zalety magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, produkty te wyróżniają się następującymi zaletami:
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Warto znać też słabe strony magnesów neodymowych:
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Siła oderwania to rezultat pomiaru dla optymalnej konfiguracji, zakładającej:
- przy kontakcie z blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- z płaszczyzną idealnie równą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
Podczas codziennego użytkowania, faktyczna siła trzymania zależy od wielu zmiennych, wymienionych od najważniejszych:
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
* Udźwig określano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
BHP przy magnesach
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Siła neodymu
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Poważne obrażenia
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Łatwopalność
Pył powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Kruchość materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Bezpieczeństwo!
Więcej informacji o zagrożeniach w artykule: BHP magnesów z neodymu.
