MW 50x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010080
GTIN/EAN: 5906301810797
Średnica Ø
50 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
294.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
70.10 kg / 687.66 N
Indukcja magnetyczna
387.23 mT / 3872 Gs
Powłoka
[NiCuNi] nikiel
106.96 ZŁ z VAT / szt. + cena za transport
86.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo skontaktuj się poprzez
formularz zgłoszeniowy
przez naszą stronę.
Parametry i wygląd magnesów neodymowych wyliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 50x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 50x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010080 |
| GTIN/EAN | 5906301810797 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 50 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 294.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 70.10 kg / 687.66 N |
| Indukcja magnetyczna ~ ? | 387.23 mT / 3872 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe dane są bezpośredni efekt kalkulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
MW 50x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3872 Gs
387.2 mT
|
70.10 kg / 70100.0 g
687.7 N
|
miażdżący |
| 1 mm |
3740 Gs
374.0 mT
|
65.41 kg / 65408.0 g
641.7 N
|
miażdżący |
| 2 mm |
3601 Gs
360.1 mT
|
60.65 kg / 60652.7 g
595.0 N
|
miażdżący |
| 3 mm |
3459 Gs
345.9 mT
|
55.95 kg / 55950.5 g
548.9 N
|
miażdżący |
| 5 mm |
3168 Gs
316.8 mT
|
46.94 kg / 46935.3 g
460.4 N
|
miażdżący |
| 10 mm |
2460 Gs
246.0 mT
|
28.31 kg / 28306.3 g
277.7 N
|
miażdżący |
| 15 mm |
1855 Gs
185.5 mT
|
16.10 kg / 16095.6 g
157.9 N
|
miażdżący |
| 20 mm |
1384 Gs
138.4 mT
|
8.96 kg / 8963.2 g
87.9 N
|
mocny |
| 30 mm |
782 Gs
78.2 mT
|
2.86 kg / 2863.1 g
28.1 N
|
mocny |
| 50 mm |
293 Gs
29.3 mT
|
0.40 kg / 402.4 g
3.9 N
|
słaby uchwyt |
MW 50x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.02 kg / 14020.0 g
137.5 N
|
| 1 mm | Stal (~0.2) |
13.08 kg / 13082.0 g
128.3 N
|
| 2 mm | Stal (~0.2) |
12.13 kg / 12130.0 g
119.0 N
|
| 3 mm | Stal (~0.2) |
11.19 kg / 11190.0 g
109.8 N
|
| 5 mm | Stal (~0.2) |
9.39 kg / 9388.0 g
92.1 N
|
| 10 mm | Stal (~0.2) |
5.66 kg / 5662.0 g
55.5 N
|
| 15 mm | Stal (~0.2) |
3.22 kg / 3220.0 g
31.6 N
|
| 20 mm | Stal (~0.2) |
1.79 kg / 1792.0 g
17.6 N
|
| 30 mm | Stal (~0.2) |
0.57 kg / 572.0 g
5.6 N
|
| 50 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
MW 50x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
21.03 kg / 21030.0 g
206.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.02 kg / 14020.0 g
137.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.01 kg / 7010.0 g
68.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
35.05 kg / 35050.0 g
343.8 N
|
MW 50x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.34 kg / 2336.7 g
22.9 N
|
| 1 mm |
|
5.84 kg / 5841.7 g
57.3 N
|
| 2 mm |
|
11.68 kg / 11683.3 g
114.6 N
|
| 5 mm |
|
29.21 kg / 29208.3 g
286.5 N
|
| 10 mm |
|
58.42 kg / 58416.7 g
573.1 N
|
MW 50x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
70.10 kg / 70100.0 g
687.7 N
|
OK |
| 40 °C | -2.2% |
68.56 kg / 68557.8 g
672.6 N
|
OK |
| 60 °C | -4.4% |
67.02 kg / 67015.6 g
657.4 N
|
|
| 80 °C | -6.6% |
65.47 kg / 65473.4 g
642.3 N
|
|
| 100 °C | -28.8% |
49.91 kg / 49911.2 g
489.6 N
|
MW 50x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
181.46 kg / 181465 g
1780.2 N
5 255 Gs
|
N/A |
| 1 mm |
175.47 kg / 175470 g
1721.4 N
7 615 Gs
|
157.92 kg / 157923 g
1549.2 N
~0 Gs
|
| 2 mm |
169.32 kg / 169319 g
1661.0 N
7 480 Gs
|
152.39 kg / 152387 g
1494.9 N
~0 Gs
|
| 3 mm |
163.16 kg / 163157 g
1600.6 N
7 343 Gs
|
146.84 kg / 146842 g
1440.5 N
~0 Gs
|
| 5 mm |
150.90 kg / 150895 g
1480.3 N
7 061 Gs
|
135.81 kg / 135806 g
1332.3 N
~0 Gs
|
| 10 mm |
121.50 kg / 121499 g
1191.9 N
6 336 Gs
|
109.35 kg / 109349 g
1072.7 N
~0 Gs
|
| 20 mm |
73.28 kg / 73275 g
718.8 N
4 921 Gs
|
65.95 kg / 65948 g
646.9 N
~0 Gs
|
| 50 mm |
12.99 kg / 12985 g
127.4 N
2 071 Gs
|
11.69 kg / 11687 g
114.6 N
~0 Gs
|
MW 50x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
MW 50x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.09 km/h
(5.30 m/s)
|
4.14 J | |
| 30 mm |
27.63 km/h
(7.67 m/s)
|
8.67 J | |
| 50 mm |
34.92 km/h
(9.70 m/s)
|
13.85 J | |
| 100 mm |
49.21 km/h
(13.67 m/s)
|
27.51 J |
MW 50x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 50x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 78 540 Mx | 785.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
MW 50x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 70.10 kg | Standard |
| Woda (dno rzeki) |
80.26 kg
(+10.16 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z wykorzystaniem podłoża ze stali niskowęglowej, działającej jako element zamykający obwód
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zakaz obróbki
Pył generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Urządzenia elektroniczne
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Siła neodymu
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Ryzyko połknięcia
Te produkty magnetyczne nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Siła zgniatająca
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
