MW 50x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010080
GTIN/EAN: 5906301810797
Średnica Ø
50 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
294.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
70.10 kg / 687.66 N
Indukcja magnetyczna
387.23 mT / 3872 Gs
Powłoka
[NiCuNi] nikiel
106.96 ZŁ z VAT / szt. + cena za transport
86.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz zapytania
na naszej stronie.
Parametry i kształt magnesu sprawdzisz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna produktu - MW 50x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 50x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010080 |
| GTIN/EAN | 5906301810797 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 50 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 294.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 70.10 kg / 687.66 N |
| Indukcja magnetyczna ~ ? | 387.23 mT / 3872 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Poniższe informacje są bezpośredni efekt kalkulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 50x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3872 Gs
387.2 mT
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
niebezpieczny! |
| 1 mm |
3740 Gs
374.0 mT
|
65.41 kg / 144.20 lbs
65408.0 g / 641.7 N
|
niebezpieczny! |
| 2 mm |
3601 Gs
360.1 mT
|
60.65 kg / 133.72 lbs
60652.7 g / 595.0 N
|
niebezpieczny! |
| 3 mm |
3459 Gs
345.9 mT
|
55.95 kg / 123.35 lbs
55950.5 g / 548.9 N
|
niebezpieczny! |
| 5 mm |
3168 Gs
316.8 mT
|
46.94 kg / 103.47 lbs
46935.3 g / 460.4 N
|
niebezpieczny! |
| 10 mm |
2460 Gs
246.0 mT
|
28.31 kg / 62.40 lbs
28306.3 g / 277.7 N
|
niebezpieczny! |
| 15 mm |
1855 Gs
185.5 mT
|
16.10 kg / 35.48 lbs
16095.6 g / 157.9 N
|
niebezpieczny! |
| 20 mm |
1384 Gs
138.4 mT
|
8.96 kg / 19.76 lbs
8963.2 g / 87.9 N
|
uwaga |
| 30 mm |
782 Gs
78.2 mT
|
2.86 kg / 6.31 lbs
2863.1 g / 28.1 N
|
uwaga |
| 50 mm |
293 Gs
29.3 mT
|
0.40 kg / 0.89 lbs
402.4 g / 3.9 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 50x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| 1 mm | Stal (~0.2) |
13.08 kg / 28.84 lbs
13082.0 g / 128.3 N
|
| 2 mm | Stal (~0.2) |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 3 mm | Stal (~0.2) |
11.19 kg / 24.67 lbs
11190.0 g / 109.8 N
|
| 5 mm | Stal (~0.2) |
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| 10 mm | Stal (~0.2) |
5.66 kg / 12.48 lbs
5662.0 g / 55.5 N
|
| 15 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 20 mm | Stal (~0.2) |
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 30 mm | Stal (~0.2) |
0.57 kg / 1.26 lbs
572.0 g / 5.6 N
|
| 50 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 50x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
21.03 kg / 46.36 lbs
21030.0 g / 206.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.01 kg / 15.45 lbs
7010.0 g / 68.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
35.05 kg / 77.27 lbs
35050.0 g / 343.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 50x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.34 kg / 5.15 lbs
2336.7 g / 22.9 N
|
| 1 mm |
|
5.84 kg / 12.88 lbs
5841.7 g / 57.3 N
|
| 2 mm |
|
11.68 kg / 25.76 lbs
11683.3 g / 114.6 N
|
| 3 mm |
|
17.53 kg / 38.64 lbs
17525.0 g / 171.9 N
|
| 5 mm |
|
29.21 kg / 64.39 lbs
29208.3 g / 286.5 N
|
| 10 mm |
|
58.42 kg / 128.79 lbs
58416.7 g / 573.1 N
|
| 11 mm |
|
64.26 kg / 141.67 lbs
64258.3 g / 630.4 N
|
| 12 mm |
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 50x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
OK |
| 40 °C | -2.2% |
68.56 kg / 151.14 lbs
68557.8 g / 672.6 N
|
OK |
| 60 °C | -4.4% |
67.02 kg / 147.74 lbs
67015.6 g / 657.4 N
|
|
| 80 °C | -6.6% |
65.47 kg / 144.34 lbs
65473.4 g / 642.3 N
|
|
| 100 °C | -28.8% |
49.91 kg / 110.04 lbs
49911.2 g / 489.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 50x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
181.46 kg / 400.06 lbs
5 255 Gs
|
27.22 kg / 60.01 lbs
27220 g / 267.0 N
|
N/A |
| 1 mm |
175.47 kg / 386.84 lbs
7 615 Gs
|
26.32 kg / 58.03 lbs
26321 g / 258.2 N
|
157.92 kg / 348.16 lbs
~0 Gs
|
| 2 mm |
169.32 kg / 373.28 lbs
7 480 Gs
|
25.40 kg / 55.99 lbs
25398 g / 249.2 N
|
152.39 kg / 335.96 lbs
~0 Gs
|
| 3 mm |
163.16 kg / 359.70 lbs
7 343 Gs
|
24.47 kg / 53.96 lbs
24474 g / 240.1 N
|
146.84 kg / 323.73 lbs
~0 Gs
|
| 5 mm |
150.90 kg / 332.67 lbs
7 061 Gs
|
22.63 kg / 49.90 lbs
22634 g / 222.0 N
|
135.81 kg / 299.40 lbs
~0 Gs
|
| 10 mm |
121.50 kg / 267.86 lbs
6 336 Gs
|
18.22 kg / 40.18 lbs
18225 g / 178.8 N
|
109.35 kg / 241.07 lbs
~0 Gs
|
| 20 mm |
73.28 kg / 161.54 lbs
4 921 Gs
|
10.99 kg / 24.23 lbs
10991 g / 107.8 N
|
65.95 kg / 145.39 lbs
~0 Gs
|
| 50 mm |
12.99 kg / 28.63 lbs
2 071 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.76 lbs
~0 Gs
|
| 60 mm |
7.41 kg / 16.34 lbs
1 565 Gs
|
1.11 kg / 2.45 lbs
1112 g / 10.9 N
|
6.67 kg / 14.71 lbs
~0 Gs
|
| 70 mm |
4.35 kg / 9.58 lbs
1 198 Gs
|
0.65 kg / 1.44 lbs
652 g / 6.4 N
|
3.91 kg / 8.62 lbs
~0 Gs
|
| 80 mm |
2.62 kg / 5.78 lbs
931 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 90 mm |
1.63 kg / 3.59 lbs
734 Gs
|
0.24 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.23 lbs
~0 Gs
|
| 100 mm |
1.04 kg / 2.30 lbs
587 Gs
|
0.16 kg / 0.34 lbs
156 g / 1.5 N
|
0.94 kg / 2.07 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 50x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 50x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.09 km/h
(5.30 m/s)
|
4.14 J | |
| 30 mm |
27.63 km/h
(7.67 m/s)
|
8.67 J | |
| 50 mm |
34.92 km/h
(9.70 m/s)
|
13.85 J | |
| 100 mm |
49.21 km/h
(13.67 m/s)
|
27.51 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 50x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 50x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 78 540 Mx | 785.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 50x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 70.10 kg | Standard |
| Woda (dno rzeki) |
80.26 kg
(+10.16 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną wolną od rys
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Ochrona urządzeń
Bardzo silne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Moc przyciągania
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie przegrzewaj magnesów
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Produkt nie dla dzieci
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Kompas i GPS
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Pył jest łatwopalny
Proszek generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
