MW 45x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010071
GTIN/EAN: 5906301810704
Średnica Ø
45 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
238.56 g
Kierunek magnesowania
↑ osiowy
Udźwig
60.94 kg / 597.79 N
Indukcja magnetyczna
411.81 mT / 4118 Gs
Powłoka
[NiCuNi] nikiel
84.45 ZŁ z VAT / szt. + cena za transport
68.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo pisz poprzez
formularz zapytania
na stronie kontakt.
Udźwig oraz formę magnesów zobaczysz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 45x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010071 |
| GTIN/EAN | 5906301810704 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 238.56 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 60.94 kg / 597.79 N |
| Indukcja magnetyczna ~ ? | 411.81 mT / 4118 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione informacje stanowią wynik analizy fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 45x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4117 Gs
411.7 mT
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
krytyczny poziom |
| 1 mm |
3955 Gs
395.5 mT
|
56.23 kg / 123.96 lbs
56228.7 g / 551.6 N
|
krytyczny poziom |
| 2 mm |
3786 Gs
378.6 mT
|
51.51 kg / 113.57 lbs
51512.3 g / 505.3 N
|
krytyczny poziom |
| 3 mm |
3613 Gs
361.3 mT
|
46.91 kg / 103.42 lbs
46911.0 g / 460.2 N
|
krytyczny poziom |
| 5 mm |
3263 Gs
326.3 mT
|
38.28 kg / 84.40 lbs
38282.6 g / 375.6 N
|
krytyczny poziom |
| 10 mm |
2442 Gs
244.2 mT
|
21.43 kg / 47.26 lbs
21434.6 g / 210.3 N
|
krytyczny poziom |
| 15 mm |
1776 Gs
177.6 mT
|
11.34 kg / 25.00 lbs
11340.0 g / 111.2 N
|
krytyczny poziom |
| 20 mm |
1285 Gs
128.5 mT
|
5.93 kg / 13.08 lbs
5932.8 g / 58.2 N
|
uwaga |
| 30 mm |
694 Gs
69.4 mT
|
1.73 kg / 3.82 lbs
1730.8 g / 17.0 N
|
słaby uchwyt |
| 50 mm |
249 Gs
24.9 mT
|
0.22 kg / 0.49 lbs
222.3 g / 2.2 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 45x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| 1 mm | Stal (~0.2) |
11.25 kg / 24.79 lbs
11246.0 g / 110.3 N
|
| 2 mm | Stal (~0.2) |
10.30 kg / 22.71 lbs
10302.0 g / 101.1 N
|
| 3 mm | Stal (~0.2) |
9.38 kg / 20.68 lbs
9382.0 g / 92.0 N
|
| 5 mm | Stal (~0.2) |
7.66 kg / 16.88 lbs
7656.0 g / 75.1 N
|
| 10 mm | Stal (~0.2) |
4.29 kg / 9.45 lbs
4286.0 g / 42.0 N
|
| 15 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2268.0 g / 22.2 N
|
| 20 mm | Stal (~0.2) |
1.19 kg / 2.61 lbs
1186.0 g / 11.6 N
|
| 30 mm | Stal (~0.2) |
0.35 kg / 0.76 lbs
346.0 g / 3.4 N
|
| 50 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 45x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
18.28 kg / 40.30 lbs
18282.0 g / 179.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.09 kg / 13.43 lbs
6094.0 g / 59.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
30.47 kg / 67.17 lbs
30470.0 g / 298.9 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 45x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.03 kg / 4.48 lbs
2031.3 g / 19.9 N
|
| 1 mm |
|
5.08 kg / 11.20 lbs
5078.3 g / 49.8 N
|
| 2 mm |
|
10.16 kg / 22.39 lbs
10156.7 g / 99.6 N
|
| 3 mm |
|
15.24 kg / 33.59 lbs
15235.0 g / 149.5 N
|
| 5 mm |
|
25.39 kg / 55.98 lbs
25391.7 g / 249.1 N
|
| 10 mm |
|
50.78 kg / 111.96 lbs
50783.3 g / 498.2 N
|
| 11 mm |
|
55.86 kg / 123.15 lbs
55861.7 g / 548.0 N
|
| 12 mm |
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 45x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
OK |
| 40 °C | -2.2% |
59.60 kg / 131.39 lbs
59599.3 g / 584.7 N
|
OK |
| 60 °C | -4.4% |
58.26 kg / 128.44 lbs
58258.6 g / 571.5 N
|
|
| 80 °C | -6.6% |
56.92 kg / 125.48 lbs
56918.0 g / 558.4 N
|
|
| 100 °C | -28.8% |
43.39 kg / 95.66 lbs
43389.3 g / 425.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 45x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
166.23 kg / 366.47 lbs
5 401 Gs
|
24.93 kg / 54.97 lbs
24934 g / 244.6 N
|
N/A |
| 1 mm |
159.87 kg / 352.45 lbs
8 076 Gs
|
23.98 kg / 52.87 lbs
23980 g / 235.2 N
|
143.88 kg / 317.20 lbs
~0 Gs
|
| 2 mm |
153.38 kg / 338.14 lbs
7 910 Gs
|
23.01 kg / 50.72 lbs
23007 g / 225.7 N
|
138.04 kg / 304.33 lbs
~0 Gs
|
| 3 mm |
146.92 kg / 323.90 lbs
7 742 Gs
|
22.04 kg / 48.58 lbs
22038 g / 216.2 N
|
132.23 kg / 291.51 lbs
~0 Gs
|
| 5 mm |
134.19 kg / 295.83 lbs
7 399 Gs
|
20.13 kg / 44.37 lbs
20128 g / 197.5 N
|
120.77 kg / 266.25 lbs
~0 Gs
|
| 10 mm |
104.43 kg / 230.22 lbs
6 527 Gs
|
15.66 kg / 34.53 lbs
15664 g / 153.7 N
|
93.98 kg / 207.20 lbs
~0 Gs
|
| 20 mm |
58.47 kg / 128.90 lbs
4 884 Gs
|
8.77 kg / 19.34 lbs
8770 g / 86.0 N
|
52.62 kg / 116.01 lbs
~0 Gs
|
| 50 mm |
8.61 kg / 18.98 lbs
1 874 Gs
|
1.29 kg / 2.85 lbs
1291 g / 12.7 N
|
7.75 kg / 17.08 lbs
~0 Gs
|
| 60 mm |
4.72 kg / 10.41 lbs
1 388 Gs
|
0.71 kg / 1.56 lbs
708 g / 6.9 N
|
4.25 kg / 9.37 lbs
~0 Gs
|
| 70 mm |
2.68 kg / 5.91 lbs
1 046 Gs
|
0.40 kg / 0.89 lbs
402 g / 3.9 N
|
2.41 kg / 5.32 lbs
~0 Gs
|
| 80 mm |
1.58 kg / 3.48 lbs
803 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 90 mm |
0.96 kg / 2.12 lbs
627 Gs
|
0.14 kg / 0.32 lbs
145 g / 1.4 N
|
0.87 kg / 1.91 lbs
~0 Gs
|
| 100 mm |
0.61 kg / 1.34 lbs
497 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.55 kg / 1.20 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 45x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 22.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 17.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 45x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.34 km/h
(5.37 m/s)
|
3.44 J | |
| 30 mm |
28.41 km/h
(7.89 m/s)
|
7.43 J | |
| 50 mm |
36.12 km/h
(10.03 m/s)
|
12.01 J | |
| 100 mm |
50.98 km/h
(14.16 m/s)
|
23.92 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 45x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 45x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 66 952 Mx | 669.5 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 45x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 60.94 kg | Standard |
| Woda (dno rzeki) |
69.78 kg
(+8.84 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- przy osiowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla elektroniki
Potężne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Produkt nie dla dzieci
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Samozapłon
Proszek powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Podatność na pękanie
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Uwaga medyczna
Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Limity termiczne
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Niklowa powłoka a alergia
Pewna grupa użytkowników posiada alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może skutkować wysypkę. Rekomendujemy stosowanie rękawic bezlateksowych.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Ogromna siła
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
