MW 45x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010071
GTIN/EAN: 5906301810704
Średnica Ø
45 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
238.56 g
Kierunek magnesowania
↑ osiowy
Udźwig
60.94 kg / 597.79 N
Indukcja magnetyczna
411.81 mT / 4118 Gs
Powłoka
[NiCuNi] nikiel
84.45 ZŁ z VAT / szt. + cena za transport
68.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie daj znać przez
formularz kontaktowy
na naszej stronie.
Parametry i kształt elementów magnetycznych zobaczysz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry produktu - MW 45x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010071 |
| GTIN/EAN | 5906301810704 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 238.56 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 60.94 kg / 597.79 N |
| Indukcja magnetyczna ~ ? | 411.81 mT / 4118 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 45x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4117 Gs
411.7 mT
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
niebezpieczny! |
| 1 mm |
3955 Gs
395.5 mT
|
56.23 kg / 123.96 lbs
56228.7 g / 551.6 N
|
niebezpieczny! |
| 2 mm |
3786 Gs
378.6 mT
|
51.51 kg / 113.57 lbs
51512.3 g / 505.3 N
|
niebezpieczny! |
| 3 mm |
3613 Gs
361.3 mT
|
46.91 kg / 103.42 lbs
46911.0 g / 460.2 N
|
niebezpieczny! |
| 5 mm |
3263 Gs
326.3 mT
|
38.28 kg / 84.40 lbs
38282.6 g / 375.6 N
|
niebezpieczny! |
| 10 mm |
2442 Gs
244.2 mT
|
21.43 kg / 47.26 lbs
21434.6 g / 210.3 N
|
niebezpieczny! |
| 15 mm |
1776 Gs
177.6 mT
|
11.34 kg / 25.00 lbs
11340.0 g / 111.2 N
|
niebezpieczny! |
| 20 mm |
1285 Gs
128.5 mT
|
5.93 kg / 13.08 lbs
5932.8 g / 58.2 N
|
mocny |
| 30 mm |
694 Gs
69.4 mT
|
1.73 kg / 3.82 lbs
1730.8 g / 17.0 N
|
niskie ryzyko |
| 50 mm |
249 Gs
24.9 mT
|
0.22 kg / 0.49 lbs
222.3 g / 2.2 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 45x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| 1 mm | Stal (~0.2) |
11.25 kg / 24.79 lbs
11246.0 g / 110.3 N
|
| 2 mm | Stal (~0.2) |
10.30 kg / 22.71 lbs
10302.0 g / 101.1 N
|
| 3 mm | Stal (~0.2) |
9.38 kg / 20.68 lbs
9382.0 g / 92.0 N
|
| 5 mm | Stal (~0.2) |
7.66 kg / 16.88 lbs
7656.0 g / 75.1 N
|
| 10 mm | Stal (~0.2) |
4.29 kg / 9.45 lbs
4286.0 g / 42.0 N
|
| 15 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2268.0 g / 22.2 N
|
| 20 mm | Stal (~0.2) |
1.19 kg / 2.61 lbs
1186.0 g / 11.6 N
|
| 30 mm | Stal (~0.2) |
0.35 kg / 0.76 lbs
346.0 g / 3.4 N
|
| 50 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 45x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
18.28 kg / 40.30 lbs
18282.0 g / 179.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.09 kg / 13.43 lbs
6094.0 g / 59.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
30.47 kg / 67.17 lbs
30470.0 g / 298.9 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 45x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.03 kg / 4.48 lbs
2031.3 g / 19.9 N
|
| 1 mm |
|
5.08 kg / 11.20 lbs
5078.3 g / 49.8 N
|
| 2 mm |
|
10.16 kg / 22.39 lbs
10156.7 g / 99.6 N
|
| 3 mm |
|
15.24 kg / 33.59 lbs
15235.0 g / 149.5 N
|
| 5 mm |
|
25.39 kg / 55.98 lbs
25391.7 g / 249.1 N
|
| 10 mm |
|
50.78 kg / 111.96 lbs
50783.3 g / 498.2 N
|
| 11 mm |
|
55.86 kg / 123.15 lbs
55861.7 g / 548.0 N
|
| 12 mm |
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 45x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
OK |
| 40 °C | -2.2% |
59.60 kg / 131.39 lbs
59599.3 g / 584.7 N
|
OK |
| 60 °C | -4.4% |
58.26 kg / 128.44 lbs
58258.6 g / 571.5 N
|
|
| 80 °C | -6.6% |
56.92 kg / 125.48 lbs
56918.0 g / 558.4 N
|
|
| 100 °C | -28.8% |
43.39 kg / 95.66 lbs
43389.3 g / 425.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 45x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
166.23 kg / 366.47 lbs
5 401 Gs
|
24.93 kg / 54.97 lbs
24934 g / 244.6 N
|
N/A |
| 1 mm |
159.87 kg / 352.45 lbs
8 076 Gs
|
23.98 kg / 52.87 lbs
23980 g / 235.2 N
|
143.88 kg / 317.20 lbs
~0 Gs
|
| 2 mm |
153.38 kg / 338.14 lbs
7 910 Gs
|
23.01 kg / 50.72 lbs
23007 g / 225.7 N
|
138.04 kg / 304.33 lbs
~0 Gs
|
| 3 mm |
146.92 kg / 323.90 lbs
7 742 Gs
|
22.04 kg / 48.58 lbs
22038 g / 216.2 N
|
132.23 kg / 291.51 lbs
~0 Gs
|
| 5 mm |
134.19 kg / 295.83 lbs
7 399 Gs
|
20.13 kg / 44.37 lbs
20128 g / 197.5 N
|
120.77 kg / 266.25 lbs
~0 Gs
|
| 10 mm |
104.43 kg / 230.22 lbs
6 527 Gs
|
15.66 kg / 34.53 lbs
15664 g / 153.7 N
|
93.98 kg / 207.20 lbs
~0 Gs
|
| 20 mm |
58.47 kg / 128.90 lbs
4 884 Gs
|
8.77 kg / 19.34 lbs
8770 g / 86.0 N
|
52.62 kg / 116.01 lbs
~0 Gs
|
| 50 mm |
8.61 kg / 18.98 lbs
1 874 Gs
|
1.29 kg / 2.85 lbs
1291 g / 12.7 N
|
7.75 kg / 17.08 lbs
~0 Gs
|
| 60 mm |
4.72 kg / 10.41 lbs
1 388 Gs
|
0.71 kg / 1.56 lbs
708 g / 6.9 N
|
4.25 kg / 9.37 lbs
~0 Gs
|
| 70 mm |
2.68 kg / 5.91 lbs
1 046 Gs
|
0.40 kg / 0.89 lbs
402 g / 3.9 N
|
2.41 kg / 5.32 lbs
~0 Gs
|
| 80 mm |
1.58 kg / 3.48 lbs
803 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 90 mm |
0.96 kg / 2.12 lbs
627 Gs
|
0.14 kg / 0.32 lbs
145 g / 1.4 N
|
0.87 kg / 1.91 lbs
~0 Gs
|
| 100 mm |
0.61 kg / 1.34 lbs
497 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.55 kg / 1.20 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 45x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 22.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 17.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 45x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.34 km/h
(5.37 m/s)
|
3.44 J | |
| 30 mm |
28.41 km/h
(7.89 m/s)
|
7.43 J | |
| 50 mm |
36.12 km/h
(10.03 m/s)
|
12.01 J | |
| 100 mm |
50.98 km/h
(14.16 m/s)
|
23.92 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 45x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 45x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 66 952 Mx | 669.5 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 45x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 60.94 kg | Standard |
| Woda (dno rzeki) |
69.78 kg
(+8.84 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Wpływ na smartfony
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Pył jest łatwopalny
Pył powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Dla uczulonych
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
