MW 3x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010064
GTIN/EAN: 5906301810636
Średnica Ø
3 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.11 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.30 kg / 2.99 N
Indukcja magnetyczna
493.99 mT / 4940 Gs
Powłoka
[NiCuNi] nikiel
0.1476 ZŁ z VAT / szt. + cena za transport
0.1200 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie pisz za pomocą
nasz formularz online
na stronie kontaktowej.
Masę a także budowę magnesów neodymowych skontrolujesz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MW 3x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 3x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010064 |
| GTIN/EAN | 5906301810636 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 3 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.11 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.30 kg / 2.99 N |
| Indukcja magnetyczna ~ ? | 493.99 mT / 4940 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze dane stanowią rezultat symulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 3x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4928 Gs
492.8 mT
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
niskie ryzyko |
| 1 mm |
2106 Gs
210.6 mT
|
0.05 kg / 0.12 lbs
54.8 g / 0.5 N
|
niskie ryzyko |
| 2 mm |
845 Gs
84.5 mT
|
0.01 kg / 0.02 lbs
8.8 g / 0.1 N
|
niskie ryzyko |
| 3 mm |
393 Gs
39.3 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
niskie ryzyko |
| 5 mm |
124 Gs
12.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 10 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 3x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 3x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 3x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
|
| 2 mm |
|
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 3 mm |
|
0.22 kg / 0.50 lbs
225.0 g / 2.2 N
|
| 5 mm |
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 10 mm |
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 11 mm |
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 12 mm |
|
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 3x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
OK |
| 40 °C | -2.2% |
0.29 kg / 0.65 lbs
293.4 g / 2.9 N
|
OK |
| 60 °C | -4.4% |
0.29 kg / 0.63 lbs
286.8 g / 2.8 N
|
OK |
| 80 °C | -6.6% |
0.28 kg / 0.62 lbs
280.2 g / 2.7 N
|
|
| 100 °C | -28.8% |
0.21 kg / 0.47 lbs
213.6 g / 2.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 3x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.06 kg / 2.33 lbs
5 766 Gs
|
0.16 kg / 0.35 lbs
159 g / 1.6 N
|
N/A |
| 1 mm |
0.49 kg / 1.08 lbs
6 712 Gs
|
0.07 kg / 0.16 lbs
74 g / 0.7 N
|
0.44 kg / 0.97 lbs
~0 Gs
|
| 2 mm |
0.19 kg / 0.43 lbs
4 213 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 3 mm |
0.08 kg / 0.17 lbs
2 629 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 5 mm |
0.01 kg / 0.03 lbs
1 131 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
248 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 3x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 3x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
52.67 km/h
(14.63 m/s)
|
0.01 J | |
| 30 mm |
91.22 km/h
(25.34 m/s)
|
0.04 J | |
| 50 mm |
117.77 km/h
(32.71 m/s)
|
0.06 J | |
| 100 mm |
166.55 km/h
(46.26 m/s)
|
0.12 J |
Tabela 9: Parametry powłoki (trwałość)
MW 3x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 3x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 353 Mx | 3.5 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 3x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.30 kg | Standard |
| Woda (dno rzeki) |
0.34 kg
(+0.04 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- przy bezpośrednim styku (brak farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Dystans (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Dla uczulonych
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Bezpieczna praca
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
To nie jest zabawka
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zakaz obróbki
Proszek powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
