MW 45x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010070
GTIN/EAN: 5906301810698
Średnica Ø
45 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
178.92 g
Kierunek magnesowania
↑ osiowy
Udźwig
48.55 kg / 476.32 N
Indukcja magnetyczna
343.84 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
61.84 ZŁ z VAT / szt. + cena za transport
50.28 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie daj znać poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Moc i wygląd magnesów neodymowych zweryfikujesz u nas w
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 45x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010070 |
| GTIN/EAN | 5906301810698 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 178.92 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 48.55 kg / 476.32 N |
| Indukcja magnetyczna ~ ? | 343.84 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Poniższe wartości są bezpośredni efekt symulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 45x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3438 Gs
343.8 mT
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
krytyczny poziom |
| 1 mm |
3318 Gs
331.8 mT
|
45.21 kg / 99.68 lbs
45214.3 g / 443.6 N
|
krytyczny poziom |
| 2 mm |
3189 Gs
318.9 mT
|
41.76 kg / 92.07 lbs
41762.8 g / 409.7 N
|
krytyczny poziom |
| 3 mm |
3054 Gs
305.4 mT
|
38.30 kg / 84.44 lbs
38303.2 g / 375.8 N
|
krytyczny poziom |
| 5 mm |
2774 Gs
277.4 mT
|
31.61 kg / 69.69 lbs
31610.0 g / 310.1 N
|
krytyczny poziom |
| 10 mm |
2090 Gs
209.0 mT
|
17.95 kg / 39.57 lbs
17948.5 g / 176.1 N
|
krytyczny poziom |
| 15 mm |
1521 Gs
152.1 mT
|
9.50 kg / 20.95 lbs
9500.8 g / 93.2 N
|
uwaga |
| 20 mm |
1096 Gs
109.6 mT
|
4.94 kg / 10.88 lbs
4936.3 g / 48.4 N
|
uwaga |
| 30 mm |
585 Gs
58.5 mT
|
1.41 kg / 3.10 lbs
1407.9 g / 13.8 N
|
bezpieczny |
| 50 mm |
205 Gs
20.5 mT
|
0.17 kg / 0.38 lbs
172.6 g / 1.7 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 45x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.71 kg / 21.41 lbs
9710.0 g / 95.3 N
|
| 1 mm | Stal (~0.2) |
9.04 kg / 19.93 lbs
9042.0 g / 88.7 N
|
| 2 mm | Stal (~0.2) |
8.35 kg / 18.41 lbs
8352.0 g / 81.9 N
|
| 3 mm | Stal (~0.2) |
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
| 5 mm | Stal (~0.2) |
6.32 kg / 13.94 lbs
6322.0 g / 62.0 N
|
| 10 mm | Stal (~0.2) |
3.59 kg / 7.91 lbs
3590.0 g / 35.2 N
|
| 15 mm | Stal (~0.2) |
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 20 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 30 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 45x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.56 kg / 32.11 lbs
14565.0 g / 142.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.71 kg / 21.41 lbs
9710.0 g / 95.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.86 kg / 10.70 lbs
4855.0 g / 47.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
24.28 kg / 53.52 lbs
24275.0 g / 238.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 45x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.43 kg / 5.35 lbs
2427.5 g / 23.8 N
|
| 1 mm |
|
6.07 kg / 13.38 lbs
6068.8 g / 59.5 N
|
| 2 mm |
|
12.14 kg / 26.76 lbs
12137.5 g / 119.1 N
|
| 3 mm |
|
18.21 kg / 40.14 lbs
18206.2 g / 178.6 N
|
| 5 mm |
|
30.34 kg / 66.90 lbs
30343.8 g / 297.7 N
|
| 10 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
| 11 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
| 12 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 45x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
OK |
| 40 °C | -2.2% |
47.48 kg / 104.68 lbs
47481.9 g / 465.8 N
|
OK |
| 60 °C | -4.4% |
46.41 kg / 102.32 lbs
46413.8 g / 455.3 N
|
|
| 80 °C | -6.6% |
45.35 kg / 99.97 lbs
45345.7 g / 444.8 N
|
|
| 100 °C | -28.8% |
34.57 kg / 76.21 lbs
34567.6 g / 339.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 45x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
115.89 kg / 255.50 lbs
4 958 Gs
|
17.38 kg / 38.32 lbs
17384 g / 170.5 N
|
N/A |
| 1 mm |
111.99 kg / 246.89 lbs
6 759 Gs
|
16.80 kg / 37.03 lbs
16798 g / 164.8 N
|
100.79 kg / 222.20 lbs
~0 Gs
|
| 2 mm |
107.93 kg / 237.94 lbs
6 636 Gs
|
16.19 kg / 35.69 lbs
16189 g / 158.8 N
|
97.14 kg / 214.15 lbs
~0 Gs
|
| 3 mm |
103.82 kg / 228.89 lbs
6 508 Gs
|
15.57 kg / 34.33 lbs
15573 g / 152.8 N
|
93.44 kg / 206.00 lbs
~0 Gs
|
| 5 mm |
95.55 kg / 210.66 lbs
6 244 Gs
|
14.33 kg / 31.60 lbs
14333 g / 140.6 N
|
86.00 kg / 189.59 lbs
~0 Gs
|
| 10 mm |
75.46 kg / 166.35 lbs
5 548 Gs
|
11.32 kg / 24.95 lbs
11318 g / 111.0 N
|
67.91 kg / 149.72 lbs
~0 Gs
|
| 20 mm |
42.84 kg / 94.46 lbs
4 181 Gs
|
6.43 kg / 14.17 lbs
6427 g / 63.0 N
|
38.56 kg / 85.01 lbs
~0 Gs
|
| 50 mm |
6.20 kg / 13.67 lbs
1 591 Gs
|
0.93 kg / 2.05 lbs
930 g / 9.1 N
|
5.58 kg / 12.31 lbs
~0 Gs
|
| 60 mm |
3.36 kg / 7.41 lbs
1 171 Gs
|
0.50 kg / 1.11 lbs
504 g / 4.9 N
|
3.02 kg / 6.67 lbs
~0 Gs
|
| 70 mm |
1.89 kg / 4.16 lbs
877 Gs
|
0.28 kg / 0.62 lbs
283 g / 2.8 N
|
1.70 kg / 3.74 lbs
~0 Gs
|
| 80 mm |
1.10 kg / 2.42 lbs
669 Gs
|
0.16 kg / 0.36 lbs
165 g / 1.6 N
|
0.99 kg / 2.18 lbs
~0 Gs
|
| 90 mm |
0.66 kg / 1.46 lbs
520 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.60 kg / 1.31 lbs
~0 Gs
|
| 100 mm |
0.41 kg / 0.91 lbs
410 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 45x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 45x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.09 km/h
(5.58 m/s)
|
2.79 J | |
| 30 mm |
29.29 km/h
(8.14 m/s)
|
5.92 J | |
| 50 mm |
37.23 km/h
(10.34 m/s)
|
9.57 J | |
| 100 mm |
52.54 km/h
(14.59 m/s)
|
19.05 J |
Tabela 9: Parametry powłoki (trwałość)
MW 45x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 45x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 57 854 Mx | 578.5 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 45x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 48.55 kg | Standard |
| Woda (dno rzeki) |
55.59 kg
(+7.04 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której grubość sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha nie przyjmuje całego pola, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Niszczenie danych
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Moc przyciągania
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Tylko dla dorosłych
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Interferencja magnetyczna
Silne pole magnetyczne destabilizuje działanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Ostrzeżenie dla alergików
Pewna grupa użytkowników posiada uczulenie na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Wskazane jest stosowanie rękawic bezlateksowych.
