MW 40x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010069
GTIN/EAN: 5906301810681
Średnica Ø
40 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
75.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.43 kg / 200.39 N
Indukcja magnetyczna
230.22 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
31.27 ZŁ z VAT / szt. + cena za transport
25.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo zostaw wiadomość korzystając z
formularz
na stronie kontaktowej.
Masę i formę magnesów neodymowych zobaczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MW 40x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010069 |
| GTIN/EAN | 5906301810681 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 75.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.43 kg / 200.39 N |
| Indukcja magnetyczna ~ ? | 230.22 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione dane są wynik analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 40x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
20.43 kg / 20430.0 g
200.4 N
|
krytyczny poziom |
| 1 mm |
2235 Gs
223.5 mT
|
19.25 kg / 19252.0 g
188.9 N
|
krytyczny poziom |
| 2 mm |
2156 Gs
215.6 mT
|
17.92 kg / 17917.4 g
175.8 N
|
krytyczny poziom |
| 3 mm |
2068 Gs
206.8 mT
|
16.49 kg / 16490.6 g
161.8 N
|
krytyczny poziom |
| 5 mm |
1875 Gs
187.5 mT
|
13.56 kg / 13556.7 g
133.0 N
|
krytyczny poziom |
| 10 mm |
1375 Gs
137.5 mT
|
7.29 kg / 7287.4 g
71.5 N
|
średnie ryzyko |
| 15 mm |
959 Gs
95.9 mT
|
3.54 kg / 3542.3 g
34.8 N
|
średnie ryzyko |
| 20 mm |
661 Gs
66.1 mT
|
1.68 kg / 1684.9 g
16.5 N
|
słaby uchwyt |
| 30 mm |
328 Gs
32.8 mT
|
0.41 kg / 414.2 g
4.1 N
|
słaby uchwyt |
| 50 mm |
105 Gs
10.5 mT
|
0.04 kg / 42.3 g
0.4 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 40x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.09 kg / 4086.0 g
40.1 N
|
| 1 mm | Stal (~0.2) |
3.85 kg / 3850.0 g
37.8 N
|
| 2 mm | Stal (~0.2) |
3.58 kg / 3584.0 g
35.2 N
|
| 3 mm | Stal (~0.2) |
3.30 kg / 3298.0 g
32.4 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 2712.0 g
26.6 N
|
| 10 mm | Stal (~0.2) |
1.46 kg / 1458.0 g
14.3 N
|
| 15 mm | Stal (~0.2) |
0.71 kg / 708.0 g
6.9 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 336.0 g
3.3 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 40x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.13 kg / 6129.0 g
60.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.09 kg / 4086.0 g
40.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.04 kg / 2043.0 g
20.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.22 kg / 10215.0 g
100.2 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 40x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.02 kg / 1021.5 g
10.0 N
|
| 1 mm |
|
2.55 kg / 2553.8 g
25.1 N
|
| 2 mm |
|
5.11 kg / 5107.5 g
50.1 N
|
| 5 mm |
|
12.77 kg / 12768.8 g
125.3 N
|
| 10 mm |
|
20.43 kg / 20430.0 g
200.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 40x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.43 kg / 20430.0 g
200.4 N
|
OK |
| 40 °C | -2.2% |
19.98 kg / 19980.5 g
196.0 N
|
OK |
| 60 °C | -4.4% |
19.53 kg / 19531.1 g
191.6 N
|
|
| 80 °C | -6.6% |
19.08 kg / 19081.6 g
187.2 N
|
|
| 100 °C | -28.8% |
14.55 kg / 14546.2 g
142.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 40x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
41.05 kg / 41054 g
402.7 N
3 871 Gs
|
N/A |
| 1 mm |
39.92 kg / 39925 g
391.7 N
4 540 Gs
|
35.93 kg / 35932 g
352.5 N
~0 Gs
|
| 2 mm |
38.69 kg / 38687 g
379.5 N
4 469 Gs
|
34.82 kg / 34818 g
341.6 N
~0 Gs
|
| 3 mm |
37.38 kg / 37376 g
366.7 N
4 393 Gs
|
33.64 kg / 33638 g
330.0 N
~0 Gs
|
| 5 mm |
34.59 kg / 34588 g
339.3 N
4 226 Gs
|
31.13 kg / 31129 g
305.4 N
~0 Gs
|
| 10 mm |
27.24 kg / 27242 g
267.2 N
3 750 Gs
|
24.52 kg / 24518 g
240.5 N
~0 Gs
|
| 20 mm |
14.64 kg / 14644 g
143.7 N
2 750 Gs
|
13.18 kg / 13180 g
129.3 N
~0 Gs
|
| 50 mm |
1.65 kg / 1645 g
16.1 N
922 Gs
|
1.48 kg / 1481 g
14.5 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 40x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 40x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.96 km/h
(5.54 m/s)
|
1.16 J | |
| 30 mm |
29.12 km/h
(8.09 m/s)
|
2.47 J | |
| 50 mm |
37.17 km/h
(10.32 m/s)
|
4.02 J | |
| 100 mm |
52.50 km/h
(14.58 m/s)
|
8.02 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 40x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 40x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 33 553 Mx | 335.5 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 40x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.43 kg | Standard |
| Woda (dno rzeki) |
23.39 kg
(+2.96 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- z użyciem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Zasady BHP dla użytkowników magnesów
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Niklowa powłoka a alergia
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Siła zgniatająca
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Obróbka mechaniczna
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Potężne pole
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Wpływ na smartfony
Silne pole magnetyczne destabilizuje działanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
