MW 40x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010069
GTIN/EAN: 5906301810681
Średnica Ø
40 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
75.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.43 kg / 200.39 N
Indukcja magnetyczna
230.22 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
31.27 ZŁ z VAT / szt. + cena za transport
25.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo pisz poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Masę i wygląd magnesów neodymowych zweryfikujesz w naszym
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 40x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010069 |
| GTIN/EAN | 5906301810681 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 75.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.43 kg / 200.39 N |
| Indukcja magnetyczna ~ ? | 230.22 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Poniższe informacje stanowią rezultat analizy inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 40x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
niebezpieczny! |
| 1 mm |
2235 Gs
223.5 mT
|
19.25 kg / 42.44 lbs
19252.0 g / 188.9 N
|
niebezpieczny! |
| 2 mm |
2156 Gs
215.6 mT
|
17.92 kg / 39.50 lbs
17917.4 g / 175.8 N
|
niebezpieczny! |
| 3 mm |
2068 Gs
206.8 mT
|
16.49 kg / 36.36 lbs
16490.6 g / 161.8 N
|
niebezpieczny! |
| 5 mm |
1875 Gs
187.5 mT
|
13.56 kg / 29.89 lbs
13556.7 g / 133.0 N
|
niebezpieczny! |
| 10 mm |
1375 Gs
137.5 mT
|
7.29 kg / 16.07 lbs
7287.4 g / 71.5 N
|
uwaga |
| 15 mm |
959 Gs
95.9 mT
|
3.54 kg / 7.81 lbs
3542.3 g / 34.8 N
|
uwaga |
| 20 mm |
661 Gs
66.1 mT
|
1.68 kg / 3.71 lbs
1684.9 g / 16.5 N
|
słaby uchwyt |
| 30 mm |
328 Gs
32.8 mT
|
0.41 kg / 0.91 lbs
414.2 g / 4.1 N
|
słaby uchwyt |
| 50 mm |
105 Gs
10.5 mT
|
0.04 kg / 0.09 lbs
42.3 g / 0.4 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 40x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| 1 mm | Stal (~0.2) |
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
| 2 mm | Stal (~0.2) |
3.58 kg / 7.90 lbs
3584.0 g / 35.2 N
|
| 3 mm | Stal (~0.2) |
3.30 kg / 7.27 lbs
3298.0 g / 32.4 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 5.98 lbs
2712.0 g / 26.6 N
|
| 10 mm | Stal (~0.2) |
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| 15 mm | Stal (~0.2) |
0.71 kg / 1.56 lbs
708.0 g / 6.9 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 0.74 lbs
336.0 g / 3.3 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 40x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.13 kg / 13.51 lbs
6129.0 g / 60.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.04 kg / 4.50 lbs
2043.0 g / 20.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.22 kg / 22.52 lbs
10215.0 g / 100.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 40x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.02 kg / 2.25 lbs
1021.5 g / 10.0 N
|
| 1 mm |
|
2.55 kg / 5.63 lbs
2553.8 g / 25.1 N
|
| 2 mm |
|
5.11 kg / 11.26 lbs
5107.5 g / 50.1 N
|
| 3 mm |
|
7.66 kg / 16.89 lbs
7661.3 g / 75.2 N
|
| 5 mm |
|
12.77 kg / 28.15 lbs
12768.8 g / 125.3 N
|
| 10 mm |
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
| 11 mm |
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
| 12 mm |
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 40x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
OK |
| 40 °C | -2.2% |
19.98 kg / 44.05 lbs
19980.5 g / 196.0 N
|
OK |
| 60 °C | -4.4% |
19.53 kg / 43.06 lbs
19531.1 g / 191.6 N
|
|
| 80 °C | -6.6% |
19.08 kg / 42.07 lbs
19081.6 g / 187.2 N
|
|
| 100 °C | -28.8% |
14.55 kg / 32.07 lbs
14546.2 g / 142.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 40x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
41.05 kg / 90.51 lbs
3 871 Gs
|
6.16 kg / 13.58 lbs
6158 g / 60.4 N
|
N/A |
| 1 mm |
39.92 kg / 88.02 lbs
4 540 Gs
|
5.99 kg / 13.20 lbs
5989 g / 58.7 N
|
35.93 kg / 79.22 lbs
~0 Gs
|
| 2 mm |
38.69 kg / 85.29 lbs
4 469 Gs
|
5.80 kg / 12.79 lbs
5803 g / 56.9 N
|
34.82 kg / 76.76 lbs
~0 Gs
|
| 3 mm |
37.38 kg / 82.40 lbs
4 393 Gs
|
5.61 kg / 12.36 lbs
5606 g / 55.0 N
|
33.64 kg / 74.16 lbs
~0 Gs
|
| 5 mm |
34.59 kg / 76.25 lbs
4 226 Gs
|
5.19 kg / 11.44 lbs
5188 g / 50.9 N
|
31.13 kg / 68.63 lbs
~0 Gs
|
| 10 mm |
27.24 kg / 60.06 lbs
3 750 Gs
|
4.09 kg / 9.01 lbs
4086 g / 40.1 N
|
24.52 kg / 54.05 lbs
~0 Gs
|
| 20 mm |
14.64 kg / 32.28 lbs
2 750 Gs
|
2.20 kg / 4.84 lbs
2197 g / 21.5 N
|
13.18 kg / 29.06 lbs
~0 Gs
|
| 50 mm |
1.65 kg / 3.63 lbs
922 Gs
|
0.25 kg / 0.54 lbs
247 g / 2.4 N
|
1.48 kg / 3.26 lbs
~0 Gs
|
| 60 mm |
0.83 kg / 1.84 lbs
656 Gs
|
0.12 kg / 0.28 lbs
125 g / 1.2 N
|
0.75 kg / 1.65 lbs
~0 Gs
|
| 70 mm |
0.44 kg / 0.97 lbs
477 Gs
|
0.07 kg / 0.15 lbs
66 g / 0.6 N
|
0.40 kg / 0.87 lbs
~0 Gs
|
| 80 mm |
0.24 kg / 0.54 lbs
355 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
270 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
210 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 40x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 40x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.96 km/h
(5.54 m/s)
|
1.16 J | |
| 30 mm |
29.12 km/h
(8.09 m/s)
|
2.47 J | |
| 50 mm |
37.17 km/h
(10.32 m/s)
|
4.02 J | |
| 100 mm |
52.50 km/h
(14.58 m/s)
|
8.02 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 40x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 40x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 33 553 Mx | 335.5 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 40x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.43 kg | Standard |
| Woda (dno rzeki) |
23.39 kg
(+2.96 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig wyznaczano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Niklowa powłoka a alergia
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Obróbka mechaniczna
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
