MW 40x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010068
GTIN/EAN: 5906301810674
Średnica Ø
40 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
282.74 g
Kierunek magnesowania
→ diametralny
Udźwig
54.73 kg / 536.88 N
Indukcja magnetyczna
515.71 mT / 5157 Gs
Powłoka
[NiCuNi] nikiel
104.80 ZŁ z VAT / szt. + cena za transport
85.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz
przez naszą stronę.
Właściwości oraz formę magnesów neodymowych skontrolujesz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna - MW 40x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010068 |
| GTIN/EAN | 5906301810674 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 282.74 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 54.73 kg / 536.88 N |
| Indukcja magnetyczna ~ ? | 515.71 mT / 5157 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze wartości są rezultat symulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 40x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5156 Gs
515.6 mT
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
miażdżący |
| 1 mm |
4900 Gs
490.0 mT
|
49.43 kg / 108.98 lbs
49432.0 g / 484.9 N
|
miażdżący |
| 2 mm |
4641 Gs
464.1 mT
|
44.33 kg / 97.74 lbs
44334.0 g / 434.9 N
|
miażdżący |
| 3 mm |
4383 Gs
438.3 mT
|
39.54 kg / 87.17 lbs
39538.7 g / 387.9 N
|
miażdżący |
| 5 mm |
3879 Gs
387.9 mT
|
30.98 kg / 68.30 lbs
30981.5 g / 303.9 N
|
miażdżący |
| 10 mm |
2773 Gs
277.3 mT
|
15.83 kg / 34.89 lbs
15826.7 g / 155.3 N
|
miażdżący |
| 15 mm |
1946 Gs
194.6 mT
|
7.79 kg / 17.18 lbs
7792.9 g / 76.4 N
|
uwaga |
| 20 mm |
1372 Gs
137.2 mT
|
3.88 kg / 8.55 lbs
3877.9 g / 38.0 N
|
uwaga |
| 30 mm |
723 Gs
72.3 mT
|
1.08 kg / 2.37 lbs
1076.5 g / 10.6 N
|
bezpieczny |
| 50 mm |
258 Gs
25.8 mT
|
0.14 kg / 0.30 lbs
137.4 g / 1.3 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 40x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| 1 mm | Stal (~0.2) |
9.89 kg / 21.79 lbs
9886.0 g / 97.0 N
|
| 2 mm | Stal (~0.2) |
8.87 kg / 19.55 lbs
8866.0 g / 87.0 N
|
| 3 mm | Stal (~0.2) |
7.91 kg / 17.43 lbs
7908.0 g / 77.6 N
|
| 5 mm | Stal (~0.2) |
6.20 kg / 13.66 lbs
6196.0 g / 60.8 N
|
| 10 mm | Stal (~0.2) |
3.17 kg / 6.98 lbs
3166.0 g / 31.1 N
|
| 15 mm | Stal (~0.2) |
1.56 kg / 3.43 lbs
1558.0 g / 15.3 N
|
| 20 mm | Stal (~0.2) |
0.78 kg / 1.71 lbs
776.0 g / 7.6 N
|
| 30 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
216.0 g / 2.1 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 40x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
16.42 kg / 36.20 lbs
16419.0 g / 161.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.47 kg / 12.07 lbs
5473.0 g / 53.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
27.37 kg / 60.33 lbs
27365.0 g / 268.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 40x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.82 kg / 4.02 lbs
1824.3 g / 17.9 N
|
| 1 mm |
|
4.56 kg / 10.05 lbs
4560.8 g / 44.7 N
|
| 2 mm |
|
9.12 kg / 20.11 lbs
9121.7 g / 89.5 N
|
| 3 mm |
|
13.68 kg / 30.16 lbs
13682.5 g / 134.2 N
|
| 5 mm |
|
22.80 kg / 50.27 lbs
22804.2 g / 223.7 N
|
| 10 mm |
|
45.61 kg / 100.55 lbs
45608.3 g / 447.4 N
|
| 11 mm |
|
50.17 kg / 110.60 lbs
50169.2 g / 492.2 N
|
| 12 mm |
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 40x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
OK |
| 40 °C | -2.2% |
53.53 kg / 118.00 lbs
53525.9 g / 525.1 N
|
OK |
| 60 °C | -4.4% |
52.32 kg / 115.35 lbs
52321.9 g / 513.3 N
|
OK |
| 80 °C | -6.6% |
51.12 kg / 112.70 lbs
51117.8 g / 501.5 N
|
|
| 100 °C | -28.8% |
38.97 kg / 85.91 lbs
38967.8 g / 382.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 40x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
205.97 kg / 454.08 lbs
5 879 Gs
|
30.89 kg / 68.11 lbs
30895 g / 303.1 N
|
N/A |
| 1 mm |
195.99 kg / 432.09 lbs
10 060 Gs
|
29.40 kg / 64.81 lbs
29399 g / 288.4 N
|
176.39 kg / 388.88 lbs
~0 Gs
|
| 2 mm |
186.03 kg / 410.12 lbs
9 800 Gs
|
27.90 kg / 61.52 lbs
27904 g / 273.7 N
|
167.42 kg / 369.11 lbs
~0 Gs
|
| 3 mm |
176.30 kg / 388.68 lbs
9 541 Gs
|
26.45 kg / 58.30 lbs
26445 g / 259.4 N
|
158.67 kg / 349.81 lbs
~0 Gs
|
| 5 mm |
157.67 kg / 347.60 lbs
9 023 Gs
|
23.65 kg / 52.14 lbs
23650 g / 232.0 N
|
141.90 kg / 312.84 lbs
~0 Gs
|
| 10 mm |
116.59 kg / 257.04 lbs
7 759 Gs
|
17.49 kg / 38.56 lbs
17489 g / 171.6 N
|
104.93 kg / 231.34 lbs
~0 Gs
|
| 20 mm |
59.56 kg / 131.31 lbs
5 545 Gs
|
8.93 kg / 19.70 lbs
8934 g / 87.6 N
|
53.60 kg / 118.18 lbs
~0 Gs
|
| 50 mm |
7.52 kg / 16.58 lbs
1 971 Gs
|
1.13 kg / 2.49 lbs
1128 g / 11.1 N
|
6.77 kg / 14.92 lbs
~0 Gs
|
| 60 mm |
4.05 kg / 8.93 lbs
1 446 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 70 mm |
2.28 kg / 5.03 lbs
1 085 Gs
|
0.34 kg / 0.75 lbs
342 g / 3.4 N
|
2.05 kg / 4.53 lbs
~0 Gs
|
| 80 mm |
1.34 kg / 2.96 lbs
832 Gs
|
0.20 kg / 0.44 lbs
201 g / 2.0 N
|
1.21 kg / 2.66 lbs
~0 Gs
|
| 90 mm |
0.82 kg / 1.80 lbs
650 Gs
|
0.12 kg / 0.27 lbs
123 g / 1.2 N
|
0.74 kg / 1.62 lbs
~0 Gs
|
| 100 mm |
0.52 kg / 1.14 lbs
517 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 40x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 23.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 40x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.37 km/h
(4.55 m/s)
|
2.92 J | |
| 30 mm |
24.60 km/h
(6.83 m/s)
|
6.60 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
10.77 J | |
| 100 mm |
44.37 km/h
(12.33 m/s)
|
21.48 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 40x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 65 488 Mx | 654.9 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 40x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 54.73 kg | Standard |
| Woda (dno rzeki) |
62.67 kg
(+7.94 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
UMP 75x25 [M10x3] GW F200 PLATINIUM Lina / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
Przegrzanie magnesu
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Uczulenie na powłokę
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Łatwopalność
Pył powstający podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Zakłócenia GPS i telefonów
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Ogromna siła
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
To nie jest zabawka
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
