MW 40x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010068
GTIN/EAN: 5906301810674
Średnica Ø
40 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
282.74 g
Kierunek magnesowania
→ diametralny
Udźwig
54.73 kg / 536.88 N
Indukcja magnetyczna
515.71 mT / 5157 Gs
Powłoka
[NiCuNi] nikiel
104.80 ZŁ z VAT / szt. + cena za transport
85.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się przez
formularz zapytania
na naszej stronie.
Masę a także formę magnesu neodymowego skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna produktu - MW 40x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010068 |
| GTIN/EAN | 5906301810674 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 282.74 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 54.73 kg / 536.88 N |
| Indukcja magnetyczna ~ ? | 515.71 mT / 5157 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Niniejsze wartości są wynik symulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 40x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5156 Gs
515.6 mT
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
krytyczny poziom |
| 1 mm |
4900 Gs
490.0 mT
|
49.43 kg / 108.98 lbs
49432.0 g / 484.9 N
|
krytyczny poziom |
| 2 mm |
4641 Gs
464.1 mT
|
44.33 kg / 97.74 lbs
44334.0 g / 434.9 N
|
krytyczny poziom |
| 3 mm |
4383 Gs
438.3 mT
|
39.54 kg / 87.17 lbs
39538.7 g / 387.9 N
|
krytyczny poziom |
| 5 mm |
3879 Gs
387.9 mT
|
30.98 kg / 68.30 lbs
30981.5 g / 303.9 N
|
krytyczny poziom |
| 10 mm |
2773 Gs
277.3 mT
|
15.83 kg / 34.89 lbs
15826.7 g / 155.3 N
|
krytyczny poziom |
| 15 mm |
1946 Gs
194.6 mT
|
7.79 kg / 17.18 lbs
7792.9 g / 76.4 N
|
uwaga |
| 20 mm |
1372 Gs
137.2 mT
|
3.88 kg / 8.55 lbs
3877.9 g / 38.0 N
|
uwaga |
| 30 mm |
723 Gs
72.3 mT
|
1.08 kg / 2.37 lbs
1076.5 g / 10.6 N
|
niskie ryzyko |
| 50 mm |
258 Gs
25.8 mT
|
0.14 kg / 0.30 lbs
137.4 g / 1.3 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 40x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| 1 mm | Stal (~0.2) |
9.89 kg / 21.79 lbs
9886.0 g / 97.0 N
|
| 2 mm | Stal (~0.2) |
8.87 kg / 19.55 lbs
8866.0 g / 87.0 N
|
| 3 mm | Stal (~0.2) |
7.91 kg / 17.43 lbs
7908.0 g / 77.6 N
|
| 5 mm | Stal (~0.2) |
6.20 kg / 13.66 lbs
6196.0 g / 60.8 N
|
| 10 mm | Stal (~0.2) |
3.17 kg / 6.98 lbs
3166.0 g / 31.1 N
|
| 15 mm | Stal (~0.2) |
1.56 kg / 3.43 lbs
1558.0 g / 15.3 N
|
| 20 mm | Stal (~0.2) |
0.78 kg / 1.71 lbs
776.0 g / 7.6 N
|
| 30 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
216.0 g / 2.1 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 40x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
16.42 kg / 36.20 lbs
16419.0 g / 161.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
10.95 kg / 24.13 lbs
10946.0 g / 107.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.47 kg / 12.07 lbs
5473.0 g / 53.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
27.37 kg / 60.33 lbs
27365.0 g / 268.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 40x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.82 kg / 4.02 lbs
1824.3 g / 17.9 N
|
| 1 mm |
|
4.56 kg / 10.05 lbs
4560.8 g / 44.7 N
|
| 2 mm |
|
9.12 kg / 20.11 lbs
9121.7 g / 89.5 N
|
| 3 mm |
|
13.68 kg / 30.16 lbs
13682.5 g / 134.2 N
|
| 5 mm |
|
22.80 kg / 50.27 lbs
22804.2 g / 223.7 N
|
| 10 mm |
|
45.61 kg / 100.55 lbs
45608.3 g / 447.4 N
|
| 11 mm |
|
50.17 kg / 110.60 lbs
50169.2 g / 492.2 N
|
| 12 mm |
|
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 40x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
54.73 kg / 120.66 lbs
54730.0 g / 536.9 N
|
OK |
| 40 °C | -2.2% |
53.53 kg / 118.00 lbs
53525.9 g / 525.1 N
|
OK |
| 60 °C | -4.4% |
52.32 kg / 115.35 lbs
52321.9 g / 513.3 N
|
OK |
| 80 °C | -6.6% |
51.12 kg / 112.70 lbs
51117.8 g / 501.5 N
|
|
| 100 °C | -28.8% |
38.97 kg / 85.91 lbs
38967.8 g / 382.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 40x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
205.97 kg / 454.08 lbs
5 879 Gs
|
30.89 kg / 68.11 lbs
30895 g / 303.1 N
|
N/A |
| 1 mm |
195.99 kg / 432.09 lbs
10 060 Gs
|
29.40 kg / 64.81 lbs
29399 g / 288.4 N
|
176.39 kg / 388.88 lbs
~0 Gs
|
| 2 mm |
186.03 kg / 410.12 lbs
9 800 Gs
|
27.90 kg / 61.52 lbs
27904 g / 273.7 N
|
167.42 kg / 369.11 lbs
~0 Gs
|
| 3 mm |
176.30 kg / 388.68 lbs
9 541 Gs
|
26.45 kg / 58.30 lbs
26445 g / 259.4 N
|
158.67 kg / 349.81 lbs
~0 Gs
|
| 5 mm |
157.67 kg / 347.60 lbs
9 023 Gs
|
23.65 kg / 52.14 lbs
23650 g / 232.0 N
|
141.90 kg / 312.84 lbs
~0 Gs
|
| 10 mm |
116.59 kg / 257.04 lbs
7 759 Gs
|
17.49 kg / 38.56 lbs
17489 g / 171.6 N
|
104.93 kg / 231.34 lbs
~0 Gs
|
| 20 mm |
59.56 kg / 131.31 lbs
5 545 Gs
|
8.93 kg / 19.70 lbs
8934 g / 87.6 N
|
53.60 kg / 118.18 lbs
~0 Gs
|
| 50 mm |
7.52 kg / 16.58 lbs
1 971 Gs
|
1.13 kg / 2.49 lbs
1128 g / 11.1 N
|
6.77 kg / 14.92 lbs
~0 Gs
|
| 60 mm |
4.05 kg / 8.93 lbs
1 446 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 70 mm |
2.28 kg / 5.03 lbs
1 085 Gs
|
0.34 kg / 0.75 lbs
342 g / 3.4 N
|
2.05 kg / 4.53 lbs
~0 Gs
|
| 80 mm |
1.34 kg / 2.96 lbs
832 Gs
|
0.20 kg / 0.44 lbs
201 g / 2.0 N
|
1.21 kg / 2.66 lbs
~0 Gs
|
| 90 mm |
0.82 kg / 1.80 lbs
650 Gs
|
0.12 kg / 0.27 lbs
123 g / 1.2 N
|
0.74 kg / 1.62 lbs
~0 Gs
|
| 100 mm |
0.52 kg / 1.14 lbs
517 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 40x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 23.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 40x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.37 km/h
(4.55 m/s)
|
2.92 J | |
| 30 mm |
24.60 km/h
(6.83 m/s)
|
6.60 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
10.77 J | |
| 100 mm |
44.37 km/h
(12.33 m/s)
|
21.48 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 40x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 65 488 Mx | 654.9 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 40x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 54.73 kg | Standard |
| Woda (dno rzeki) |
62.67 kg
(+7.94 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Tylko dla dorosłych
Te produkty magnetyczne to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Siła neodymu
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Urazy ciała
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
