MW 40x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010066
GTIN/EAN: 5906301810650
Średnica Ø
40 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
27.73 kg / 271.99 N
Indukcja magnetyczna
277.22 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
36.57 ZŁ z VAT / szt. + cena za transport
29.73 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie pisz za pomocą
formularz zapytania
na stronie kontakt.
Moc a także kształt magnesu neodymowego zobaczysz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane produktu - MW 40x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010066 |
| GTIN/EAN | 5906301810650 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 27.73 kg / 271.99 N |
| Indukcja magnetyczna ~ ? | 277.22 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Niniejsze wartości są wynik symulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 40x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2772 Gs
277.2 mT
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
miażdżący |
| 1 mm |
2678 Gs
267.8 mT
|
25.89 kg / 57.08 lbs
25889.6 g / 254.0 N
|
miażdżący |
| 2 mm |
2573 Gs
257.3 mT
|
23.89 kg / 52.68 lbs
23893.3 g / 234.4 N
|
miażdżący |
| 3 mm |
2459 Gs
245.9 mT
|
21.83 kg / 48.12 lbs
21827.6 g / 214.1 N
|
miażdżący |
| 5 mm |
2216 Gs
221.6 mT
|
17.73 kg / 39.08 lbs
17728.1 g / 173.9 N
|
miażdżący |
| 10 mm |
1611 Gs
161.1 mT
|
9.37 kg / 20.66 lbs
9371.0 g / 91.9 N
|
mocny |
| 15 mm |
1121 Gs
112.1 mT
|
4.54 kg / 10.01 lbs
4538.6 g / 44.5 N
|
mocny |
| 20 mm |
775 Gs
77.5 mT
|
2.17 kg / 4.77 lbs
2165.8 g / 21.2 N
|
mocny |
| 30 mm |
387 Gs
38.7 mT
|
0.54 kg / 1.19 lbs
539.8 g / 5.3 N
|
niskie ryzyko |
| 50 mm |
125 Gs
12.5 mT
|
0.06 kg / 0.12 lbs
56.6 g / 0.6 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 40x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.55 kg / 12.23 lbs
5546.0 g / 54.4 N
|
| 1 mm | Stal (~0.2) |
5.18 kg / 11.42 lbs
5178.0 g / 50.8 N
|
| 2 mm | Stal (~0.2) |
4.78 kg / 10.53 lbs
4778.0 g / 46.9 N
|
| 3 mm | Stal (~0.2) |
4.37 kg / 9.63 lbs
4366.0 g / 42.8 N
|
| 5 mm | Stal (~0.2) |
3.55 kg / 7.82 lbs
3546.0 g / 34.8 N
|
| 10 mm | Stal (~0.2) |
1.87 kg / 4.13 lbs
1874.0 g / 18.4 N
|
| 15 mm | Stal (~0.2) |
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 20 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 40x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.32 kg / 18.34 lbs
8319.0 g / 81.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.55 kg / 12.23 lbs
5546.0 g / 54.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.77 kg / 6.11 lbs
2773.0 g / 27.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
13.87 kg / 30.57 lbs
13865.0 g / 136.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 40x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.39 kg / 3.06 lbs
1386.5 g / 13.6 N
|
| 1 mm |
|
3.47 kg / 7.64 lbs
3466.3 g / 34.0 N
|
| 2 mm |
|
6.93 kg / 15.28 lbs
6932.5 g / 68.0 N
|
| 3 mm |
|
10.40 kg / 22.93 lbs
10398.8 g / 102.0 N
|
| 5 mm |
|
17.33 kg / 38.21 lbs
17331.3 g / 170.0 N
|
| 10 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
| 11 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
| 12 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 40x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
OK |
| 40 °C | -2.2% |
27.12 kg / 59.79 lbs
27119.9 g / 266.0 N
|
OK |
| 60 °C | -4.4% |
26.51 kg / 58.44 lbs
26509.9 g / 260.1 N
|
|
| 80 °C | -6.6% |
25.90 kg / 57.10 lbs
25899.8 g / 254.1 N
|
|
| 100 °C | -28.8% |
19.74 kg / 43.53 lbs
19743.8 g / 193.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 40x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.52 kg / 131.22 lbs
4 382 Gs
|
8.93 kg / 19.68 lbs
8928 g / 87.6 N
|
N/A |
| 1 mm |
57.61 kg / 127.01 lbs
5 454 Gs
|
8.64 kg / 19.05 lbs
8642 g / 84.8 N
|
51.85 kg / 114.31 lbs
~0 Gs
|
| 2 mm |
55.57 kg / 122.52 lbs
5 357 Gs
|
8.34 kg / 18.38 lbs
8336 g / 81.8 N
|
50.01 kg / 110.26 lbs
~0 Gs
|
| 3 mm |
53.46 kg / 117.85 lbs
5 254 Gs
|
8.02 kg / 17.68 lbs
8019 g / 78.7 N
|
48.11 kg / 106.07 lbs
~0 Gs
|
| 5 mm |
49.08 kg / 108.20 lbs
5 034 Gs
|
7.36 kg / 16.23 lbs
7362 g / 72.2 N
|
44.17 kg / 97.38 lbs
~0 Gs
|
| 10 mm |
38.05 kg / 83.89 lbs
4 433 Gs
|
5.71 kg / 12.58 lbs
5708 g / 56.0 N
|
34.25 kg / 75.50 lbs
~0 Gs
|
| 20 mm |
20.11 kg / 44.35 lbs
3 223 Gs
|
3.02 kg / 6.65 lbs
3017 g / 29.6 N
|
18.10 kg / 39.91 lbs
~0 Gs
|
| 50 mm |
2.27 kg / 5.01 lbs
1 083 Gs
|
0.34 kg / 0.75 lbs
341 g / 3.3 N
|
2.05 kg / 4.51 lbs
~0 Gs
|
| 60 mm |
1.16 kg / 2.55 lbs
773 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 70 mm |
0.62 kg / 1.36 lbs
565 Gs
|
0.09 kg / 0.20 lbs
93 g / 0.9 N
|
0.56 kg / 1.23 lbs
~0 Gs
|
| 80 mm |
0.35 kg / 0.76 lbs
422 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 90 mm |
0.20 kg / 0.44 lbs
322 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.40 lbs
~0 Gs
|
| 100 mm |
0.12 kg / 0.27 lbs
251 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 40x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 40x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
1.55 J | |
| 30 mm |
30.32 km/h
(8.42 m/s)
|
3.34 J | |
| 50 mm |
38.73 km/h
(10.76 m/s)
|
5.45 J | |
| 100 mm |
54.71 km/h
(15.20 m/s)
|
10.88 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 40x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 700 Mx | 387.0 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 40x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 27.73 kg | Standard |
| Woda (dno rzeki) |
31.75 kg
(+4.02 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki powłoce (nikiel, Au, Ag) zyskują nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- z powierzchnią idealnie równą
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Urazy ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Moc przyciągania
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Zakaz zabawy
Neodymowe magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
