MW 40x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010066
GTIN/EAN: 5906301810650
Średnica Ø
40 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
27.73 kg / 271.99 N
Indukcja magnetyczna
277.22 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
36.57 ZŁ z VAT / szt. + cena za transport
29.73 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie pisz korzystając z
nasz formularz online
na stronie kontaktowej.
Właściwości oraz wygląd magnesu neodymowego skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MW 40x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010066 |
| GTIN/EAN | 5906301810650 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 27.73 kg / 271.99 N |
| Indukcja magnetyczna ~ ? | 277.22 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe wartości są rezultat analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 40x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2772 Gs
277.2 mT
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
niebezpieczny! |
| 1 mm |
2678 Gs
267.8 mT
|
25.89 kg / 57.08 lbs
25889.6 g / 254.0 N
|
niebezpieczny! |
| 2 mm |
2573 Gs
257.3 mT
|
23.89 kg / 52.68 lbs
23893.3 g / 234.4 N
|
niebezpieczny! |
| 3 mm |
2459 Gs
245.9 mT
|
21.83 kg / 48.12 lbs
21827.6 g / 214.1 N
|
niebezpieczny! |
| 5 mm |
2216 Gs
221.6 mT
|
17.73 kg / 39.08 lbs
17728.1 g / 173.9 N
|
niebezpieczny! |
| 10 mm |
1611 Gs
161.1 mT
|
9.37 kg / 20.66 lbs
9371.0 g / 91.9 N
|
mocny |
| 15 mm |
1121 Gs
112.1 mT
|
4.54 kg / 10.01 lbs
4538.6 g / 44.5 N
|
mocny |
| 20 mm |
775 Gs
77.5 mT
|
2.17 kg / 4.77 lbs
2165.8 g / 21.2 N
|
mocny |
| 30 mm |
387 Gs
38.7 mT
|
0.54 kg / 1.19 lbs
539.8 g / 5.3 N
|
słaby uchwyt |
| 50 mm |
125 Gs
12.5 mT
|
0.06 kg / 0.12 lbs
56.6 g / 0.6 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 40x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.55 kg / 12.23 lbs
5546.0 g / 54.4 N
|
| 1 mm | Stal (~0.2) |
5.18 kg / 11.42 lbs
5178.0 g / 50.8 N
|
| 2 mm | Stal (~0.2) |
4.78 kg / 10.53 lbs
4778.0 g / 46.9 N
|
| 3 mm | Stal (~0.2) |
4.37 kg / 9.63 lbs
4366.0 g / 42.8 N
|
| 5 mm | Stal (~0.2) |
3.55 kg / 7.82 lbs
3546.0 g / 34.8 N
|
| 10 mm | Stal (~0.2) |
1.87 kg / 4.13 lbs
1874.0 g / 18.4 N
|
| 15 mm | Stal (~0.2) |
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 20 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 40x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.32 kg / 18.34 lbs
8319.0 g / 81.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.55 kg / 12.23 lbs
5546.0 g / 54.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.77 kg / 6.11 lbs
2773.0 g / 27.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
13.87 kg / 30.57 lbs
13865.0 g / 136.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 40x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.39 kg / 3.06 lbs
1386.5 g / 13.6 N
|
| 1 mm |
|
3.47 kg / 7.64 lbs
3466.3 g / 34.0 N
|
| 2 mm |
|
6.93 kg / 15.28 lbs
6932.5 g / 68.0 N
|
| 3 mm |
|
10.40 kg / 22.93 lbs
10398.8 g / 102.0 N
|
| 5 mm |
|
17.33 kg / 38.21 lbs
17331.3 g / 170.0 N
|
| 10 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
| 11 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
| 12 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 40x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
OK |
| 40 °C | -2.2% |
27.12 kg / 59.79 lbs
27119.9 g / 266.0 N
|
OK |
| 60 °C | -4.4% |
26.51 kg / 58.44 lbs
26509.9 g / 260.1 N
|
|
| 80 °C | -6.6% |
25.90 kg / 57.10 lbs
25899.8 g / 254.1 N
|
|
| 100 °C | -28.8% |
19.74 kg / 43.53 lbs
19743.8 g / 193.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 40x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.52 kg / 131.22 lbs
4 382 Gs
|
8.93 kg / 19.68 lbs
8928 g / 87.6 N
|
N/A |
| 1 mm |
57.61 kg / 127.01 lbs
5 454 Gs
|
8.64 kg / 19.05 lbs
8642 g / 84.8 N
|
51.85 kg / 114.31 lbs
~0 Gs
|
| 2 mm |
55.57 kg / 122.52 lbs
5 357 Gs
|
8.34 kg / 18.38 lbs
8336 g / 81.8 N
|
50.01 kg / 110.26 lbs
~0 Gs
|
| 3 mm |
53.46 kg / 117.85 lbs
5 254 Gs
|
8.02 kg / 17.68 lbs
8019 g / 78.7 N
|
48.11 kg / 106.07 lbs
~0 Gs
|
| 5 mm |
49.08 kg / 108.20 lbs
5 034 Gs
|
7.36 kg / 16.23 lbs
7362 g / 72.2 N
|
44.17 kg / 97.38 lbs
~0 Gs
|
| 10 mm |
38.05 kg / 83.89 lbs
4 433 Gs
|
5.71 kg / 12.58 lbs
5708 g / 56.0 N
|
34.25 kg / 75.50 lbs
~0 Gs
|
| 20 mm |
20.11 kg / 44.35 lbs
3 223 Gs
|
3.02 kg / 6.65 lbs
3017 g / 29.6 N
|
18.10 kg / 39.91 lbs
~0 Gs
|
| 50 mm |
2.27 kg / 5.01 lbs
1 083 Gs
|
0.34 kg / 0.75 lbs
341 g / 3.3 N
|
2.05 kg / 4.51 lbs
~0 Gs
|
| 60 mm |
1.16 kg / 2.55 lbs
773 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 70 mm |
0.62 kg / 1.36 lbs
565 Gs
|
0.09 kg / 0.20 lbs
93 g / 0.9 N
|
0.56 kg / 1.23 lbs
~0 Gs
|
| 80 mm |
0.35 kg / 0.76 lbs
422 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 90 mm |
0.20 kg / 0.44 lbs
322 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.40 lbs
~0 Gs
|
| 100 mm |
0.12 kg / 0.27 lbs
251 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 40x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 40x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
1.55 J | |
| 30 mm |
30.32 km/h
(8.42 m/s)
|
3.34 J | |
| 50 mm |
38.73 km/h
(10.76 m/s)
|
5.45 J | |
| 100 mm |
54.71 km/h
(15.20 m/s)
|
10.88 J |
Tabela 9: Odporność na korozję
MW 40x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 40x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 700 Mx | 387.0 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 40x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 27.73 kg | Standard |
| Woda (dno rzeki) |
31.75 kg
(+4.02 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy zastosowaniu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (bez zanieczyszczeń)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (między magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Moc przyciągania
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Wrażliwość na ciepło
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ostrzeżenie dla alergików
Niektóre osoby ma alergię kontaktową na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
