MW 40x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010066
GTIN/EAN: 5906301810650
Średnica Ø
40 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
27.73 kg / 271.99 N
Indukcja magnetyczna
277.22 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
36.57 ZŁ z VAT / szt. + cena za transport
29.73 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz zapytania
w sekcji kontakt.
Moc oraz budowę elementów magnetycznych zweryfikujesz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 40x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010066 |
| GTIN/EAN | 5906301810650 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 27.73 kg / 271.99 N |
| Indukcja magnetyczna ~ ? | 277.22 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Przedstawione informacje są wynik symulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 40x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2772 Gs
277.2 mT
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
niebezpieczny! |
| 1 mm |
2678 Gs
267.8 mT
|
25.89 kg / 57.08 lbs
25889.6 g / 254.0 N
|
niebezpieczny! |
| 2 mm |
2573 Gs
257.3 mT
|
23.89 kg / 52.68 lbs
23893.3 g / 234.4 N
|
niebezpieczny! |
| 3 mm |
2459 Gs
245.9 mT
|
21.83 kg / 48.12 lbs
21827.6 g / 214.1 N
|
niebezpieczny! |
| 5 mm |
2216 Gs
221.6 mT
|
17.73 kg / 39.08 lbs
17728.1 g / 173.9 N
|
niebezpieczny! |
| 10 mm |
1611 Gs
161.1 mT
|
9.37 kg / 20.66 lbs
9371.0 g / 91.9 N
|
uwaga |
| 15 mm |
1121 Gs
112.1 mT
|
4.54 kg / 10.01 lbs
4538.6 g / 44.5 N
|
uwaga |
| 20 mm |
775 Gs
77.5 mT
|
2.17 kg / 4.77 lbs
2165.8 g / 21.2 N
|
uwaga |
| 30 mm |
387 Gs
38.7 mT
|
0.54 kg / 1.19 lbs
539.8 g / 5.3 N
|
słaby uchwyt |
| 50 mm |
125 Gs
12.5 mT
|
0.06 kg / 0.12 lbs
56.6 g / 0.6 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MW 40x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.55 kg / 12.23 lbs
5546.0 g / 54.4 N
|
| 1 mm | Stal (~0.2) |
5.18 kg / 11.42 lbs
5178.0 g / 50.8 N
|
| 2 mm | Stal (~0.2) |
4.78 kg / 10.53 lbs
4778.0 g / 46.9 N
|
| 3 mm | Stal (~0.2) |
4.37 kg / 9.63 lbs
4366.0 g / 42.8 N
|
| 5 mm | Stal (~0.2) |
3.55 kg / 7.82 lbs
3546.0 g / 34.8 N
|
| 10 mm | Stal (~0.2) |
1.87 kg / 4.13 lbs
1874.0 g / 18.4 N
|
| 15 mm | Stal (~0.2) |
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 20 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 40x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.32 kg / 18.34 lbs
8319.0 g / 81.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.55 kg / 12.23 lbs
5546.0 g / 54.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.77 kg / 6.11 lbs
2773.0 g / 27.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
13.87 kg / 30.57 lbs
13865.0 g / 136.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 40x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.39 kg / 3.06 lbs
1386.5 g / 13.6 N
|
| 1 mm |
|
3.47 kg / 7.64 lbs
3466.3 g / 34.0 N
|
| 2 mm |
|
6.93 kg / 15.28 lbs
6932.5 g / 68.0 N
|
| 3 mm |
|
10.40 kg / 22.93 lbs
10398.8 g / 102.0 N
|
| 5 mm |
|
17.33 kg / 38.21 lbs
17331.3 g / 170.0 N
|
| 10 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
| 11 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
| 12 mm |
|
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 40x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
27.73 kg / 61.13 lbs
27730.0 g / 272.0 N
|
OK |
| 40 °C | -2.2% |
27.12 kg / 59.79 lbs
27119.9 g / 266.0 N
|
OK |
| 60 °C | -4.4% |
26.51 kg / 58.44 lbs
26509.9 g / 260.1 N
|
|
| 80 °C | -6.6% |
25.90 kg / 57.10 lbs
25899.8 g / 254.1 N
|
|
| 100 °C | -28.8% |
19.74 kg / 43.53 lbs
19743.8 g / 193.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 40x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.52 kg / 131.22 lbs
4 382 Gs
|
8.93 kg / 19.68 lbs
8928 g / 87.6 N
|
N/A |
| 1 mm |
57.61 kg / 127.01 lbs
5 454 Gs
|
8.64 kg / 19.05 lbs
8642 g / 84.8 N
|
51.85 kg / 114.31 lbs
~0 Gs
|
| 2 mm |
55.57 kg / 122.52 lbs
5 357 Gs
|
8.34 kg / 18.38 lbs
8336 g / 81.8 N
|
50.01 kg / 110.26 lbs
~0 Gs
|
| 3 mm |
53.46 kg / 117.85 lbs
5 254 Gs
|
8.02 kg / 17.68 lbs
8019 g / 78.7 N
|
48.11 kg / 106.07 lbs
~0 Gs
|
| 5 mm |
49.08 kg / 108.20 lbs
5 034 Gs
|
7.36 kg / 16.23 lbs
7362 g / 72.2 N
|
44.17 kg / 97.38 lbs
~0 Gs
|
| 10 mm |
38.05 kg / 83.89 lbs
4 433 Gs
|
5.71 kg / 12.58 lbs
5708 g / 56.0 N
|
34.25 kg / 75.50 lbs
~0 Gs
|
| 20 mm |
20.11 kg / 44.35 lbs
3 223 Gs
|
3.02 kg / 6.65 lbs
3017 g / 29.6 N
|
18.10 kg / 39.91 lbs
~0 Gs
|
| 50 mm |
2.27 kg / 5.01 lbs
1 083 Gs
|
0.34 kg / 0.75 lbs
341 g / 3.3 N
|
2.05 kg / 4.51 lbs
~0 Gs
|
| 60 mm |
1.16 kg / 2.55 lbs
773 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 70 mm |
0.62 kg / 1.36 lbs
565 Gs
|
0.09 kg / 0.20 lbs
93 g / 0.9 N
|
0.56 kg / 1.23 lbs
~0 Gs
|
| 80 mm |
0.35 kg / 0.76 lbs
422 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 90 mm |
0.20 kg / 0.44 lbs
322 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.40 lbs
~0 Gs
|
| 100 mm |
0.12 kg / 0.27 lbs
251 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 40x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 40x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
1.55 J | |
| 30 mm |
30.32 km/h
(8.42 m/s)
|
3.34 J | |
| 50 mm |
38.73 km/h
(10.76 m/s)
|
5.45 J | |
| 100 mm |
54.71 km/h
(15.20 m/s)
|
10.88 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 40x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 700 Mx | 387.0 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 40x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 27.73 kg | Standard |
| Woda (dno rzeki) |
31.75 kg
(+4.02 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Ostrzeżenia
Nie dawać dzieciom
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Interferencja medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ogromna siła
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Ryzyko pęknięcia
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Dla uczulonych
Część populacji posiada alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Rekomendujemy stosowanie rękawic bezlateksowych.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
