MW 38x3.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010062
GTIN/EAN: 5906301810612
Średnica Ø
38 mm [±0,1 mm]
Wysokość
3.5 mm [±0,1 mm]
Waga
29.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.09 kg / 49.91 N
Indukcja magnetyczna
112.31 mT / 1123 Gs
Powłoka
[NiCuNi] nikiel
15.83 ZŁ z VAT / szt. + cena za transport
12.87 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz korzystając z
formularz
w sekcji kontakt.
Udźwig oraz budowę magnesów obliczysz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MW 38x3.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x3.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010062 |
| GTIN/EAN | 5906301810612 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 3.5 mm [±0,1 mm] |
| Waga | 29.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.09 kg / 49.91 N |
| Indukcja magnetyczna ~ ? | 112.31 mT / 1123 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Poniższe dane są wynik analizy inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 38x3.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1123 Gs
112.3 mT
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
mocny |
| 1 mm |
1103 Gs
110.3 mT
|
4.91 kg / 10.82 lbs
4910.1 g / 48.2 N
|
mocny |
| 2 mm |
1075 Gs
107.5 mT
|
4.66 kg / 10.28 lbs
4663.0 g / 45.7 N
|
mocny |
| 3 mm |
1040 Gs
104.0 mT
|
4.36 kg / 9.62 lbs
4364.2 g / 42.8 N
|
mocny |
| 5 mm |
954 Gs
95.4 mT
|
3.67 kg / 8.10 lbs
3673.1 g / 36.0 N
|
mocny |
| 10 mm |
703 Gs
70.3 mT
|
2.00 kg / 4.40 lbs
1997.1 g / 19.6 N
|
bezpieczny |
| 15 mm |
483 Gs
48.3 mT
|
0.94 kg / 2.08 lbs
943.2 g / 9.3 N
|
bezpieczny |
| 20 mm |
326 Gs
32.6 mT
|
0.43 kg / 0.95 lbs
429.7 g / 4.2 N
|
bezpieczny |
| 30 mm |
155 Gs
15.5 mT
|
0.10 kg / 0.21 lbs
97.1 g / 1.0 N
|
bezpieczny |
| 50 mm |
47 Gs
4.7 mT
|
0.01 kg / 0.02 lbs
8.9 g / 0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 38x3.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| 1 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
982.0 g / 9.6 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 2.05 lbs
932.0 g / 9.1 N
|
| 3 mm | Stal (~0.2) |
0.87 kg / 1.92 lbs
872.0 g / 8.6 N
|
| 5 mm | Stal (~0.2) |
0.73 kg / 1.62 lbs
734.0 g / 7.2 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 15 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 38x3.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 38x3.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| 1 mm |
|
1.27 kg / 2.81 lbs
1272.5 g / 12.5 N
|
| 2 mm |
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
| 3 mm |
|
3.82 kg / 8.42 lbs
3817.5 g / 37.4 N
|
| 5 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 10 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 11 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 12 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 38x3.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
OK |
| 40 °C | -2.2% |
4.98 kg / 10.97 lbs
4978.0 g / 48.8 N
|
OK |
| 60 °C | -4.4% |
4.87 kg / 10.73 lbs
4866.0 g / 47.7 N
|
|
| 80 °C | -6.6% |
4.75 kg / 10.48 lbs
4754.1 g / 46.6 N
|
|
| 100 °C | -28.8% |
3.62 kg / 7.99 lbs
3624.1 g / 35.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 38x3.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.82 kg / 19.44 lbs
2 143 Gs
|
1.32 kg / 2.92 lbs
1323 g / 13.0 N
|
N/A |
| 1 mm |
8.68 kg / 19.13 lbs
2 228 Gs
|
1.30 kg / 2.87 lbs
1302 g / 12.8 N
|
7.81 kg / 17.22 lbs
~0 Gs
|
| 2 mm |
8.51 kg / 18.75 lbs
2 206 Gs
|
1.28 kg / 2.81 lbs
1276 g / 12.5 N
|
7.66 kg / 16.88 lbs
~0 Gs
|
| 3 mm |
8.31 kg / 18.31 lbs
2 180 Gs
|
1.25 kg / 2.75 lbs
1246 g / 12.2 N
|
7.47 kg / 16.48 lbs
~0 Gs
|
| 5 mm |
7.83 kg / 17.26 lbs
2 116 Gs
|
1.17 kg / 2.59 lbs
1174 g / 11.5 N
|
7.05 kg / 15.53 lbs
~0 Gs
|
| 10 mm |
6.36 kg / 14.03 lbs
1 908 Gs
|
0.95 kg / 2.10 lbs
955 g / 9.4 N
|
5.73 kg / 12.63 lbs
~0 Gs
|
| 20 mm |
3.46 kg / 7.63 lbs
1 407 Gs
|
0.52 kg / 1.14 lbs
519 g / 5.1 N
|
3.11 kg / 6.87 lbs
~0 Gs
|
| 50 mm |
0.35 kg / 0.76 lbs
445 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 60 mm |
0.17 kg / 0.37 lbs
310 Gs
|
0.03 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 70 mm |
0.09 kg / 0.19 lbs
222 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.10 lbs
163 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.06 lbs
122 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.03 lbs
94 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 38x3.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 38x3.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.10 km/h
(4.47 m/s)
|
0.30 J | |
| 30 mm |
23.11 km/h
(6.42 m/s)
|
0.61 J | |
| 50 mm |
29.52 km/h
(8.20 m/s)
|
1.00 J | |
| 100 mm |
41.70 km/h
(11.58 m/s)
|
2.00 J |
Tabela 9: Odporność na korozję
MW 38x3.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 38x3.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 022 Mx | 170.2 µWb |
| Współczynnik Pc | 0.14 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 38x3.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.09 kg | Standard |
| Woda (dno rzeki) |
5.83 kg
(+0.74 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenia
Nośniki danych
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Uszkodzenia ciała
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Ogromna siła
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Nie wierć w magnesach
Pył generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ostrzeżenie dla alergików
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Temperatura pracy
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
