MW 24x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010048
GTIN/EAN: 5906301810476
Średnica Ø
24 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
20.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.98 kg / 97.88 N
Indukcja magnetyczna
277.18 mT / 2772 Gs
Powłoka
[Zn] cynk
5.10 ZŁ z VAT / szt. + cena za transport
4.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub skontaktuj się przez
formularz kontaktowy
w sekcji kontakt.
Udźwig a także budowę elementów magnetycznych skontrolujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MW 24x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 24x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010048 |
| GTIN/EAN | 5906301810476 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 24 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 20.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.98 kg / 97.88 N |
| Indukcja magnetyczna ~ ? | 277.18 mT / 2772 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 24x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
mocny |
| 1 mm |
2609 Gs
260.9 mT
|
8.85 kg / 19.50 lbs
8846.4 g / 86.8 N
|
mocny |
| 2 mm |
2420 Gs
242.0 mT
|
7.61 kg / 16.78 lbs
7609.6 g / 74.7 N
|
mocny |
| 3 mm |
2216 Gs
221.6 mT
|
6.38 kg / 14.07 lbs
6383.0 g / 62.6 N
|
mocny |
| 5 mm |
1805 Gs
180.5 mT
|
4.23 kg / 9.33 lbs
4233.2 g / 41.5 N
|
mocny |
| 10 mm |
991 Gs
99.1 mT
|
1.28 kg / 2.81 lbs
1275.9 g / 12.5 N
|
bezpieczny |
| 15 mm |
542 Gs
54.2 mT
|
0.38 kg / 0.84 lbs
381.4 g / 3.7 N
|
bezpieczny |
| 20 mm |
313 Gs
31.3 mT
|
0.13 kg / 0.28 lbs
127.2 g / 1.2 N
|
bezpieczny |
| 30 mm |
125 Gs
12.5 mT
|
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
|
bezpieczny |
| 50 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 24x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.90 lbs
1770.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.52 kg / 3.36 lbs
1522.0 g / 14.9 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 5 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
846.0 g / 8.3 N
|
| 10 mm | Stal (~0.2) |
0.26 kg / 0.56 lbs
256.0 g / 2.5 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 24x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.99 kg / 6.60 lbs
2994.0 g / 29.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 24x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| 1 mm |
|
2.50 kg / 5.50 lbs
2495.0 g / 24.5 N
|
| 2 mm |
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
| 3 mm |
|
7.49 kg / 16.50 lbs
7485.0 g / 73.4 N
|
| 5 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 10 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 11 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 12 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 24x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
OK |
| 40 °C | -2.2% |
9.76 kg / 21.52 lbs
9760.4 g / 95.7 N
|
OK |
| 60 °C | -4.4% |
9.54 kg / 21.03 lbs
9540.9 g / 93.6 N
|
|
| 80 °C | -6.6% |
9.32 kg / 20.55 lbs
9321.3 g / 91.4 N
|
|
| 100 °C | -28.8% |
7.11 kg / 15.67 lbs
7105.8 g / 69.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 24x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.42 kg / 47.22 lbs
4 381 Gs
|
3.21 kg / 7.08 lbs
3213 g / 31.5 N
|
N/A |
| 1 mm |
20.25 kg / 44.65 lbs
5 390 Gs
|
3.04 kg / 6.70 lbs
3038 g / 29.8 N
|
18.23 kg / 40.19 lbs
~0 Gs
|
| 2 mm |
18.99 kg / 41.86 lbs
5 218 Gs
|
2.85 kg / 6.28 lbs
2848 g / 27.9 N
|
17.09 kg / 37.67 lbs
~0 Gs
|
| 3 mm |
17.67 kg / 38.95 lbs
5 034 Gs
|
2.65 kg / 5.84 lbs
2650 g / 26.0 N
|
15.90 kg / 35.06 lbs
~0 Gs
|
| 5 mm |
15.00 kg / 33.07 lbs
4 638 Gs
|
2.25 kg / 4.96 lbs
2250 g / 22.1 N
|
13.50 kg / 29.76 lbs
~0 Gs
|
| 10 mm |
9.09 kg / 20.03 lbs
3 610 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.03 lbs
~0 Gs
|
| 20 mm |
2.74 kg / 6.04 lbs
1 982 Gs
|
0.41 kg / 0.91 lbs
411 g / 4.0 N
|
2.46 kg / 5.43 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.23 lbs
385 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.10 lbs
251 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
171 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
121 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
67 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 24x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 24x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.05 km/h
(6.68 m/s)
|
0.45 J | |
| 30 mm |
38.72 km/h
(10.76 m/s)
|
1.18 J | |
| 50 mm |
49.93 km/h
(13.87 m/s)
|
1.96 J | |
| 100 mm |
70.61 km/h
(19.61 m/s)
|
3.92 J |
Tabela 9: Parametry powłoki (trwałość)
MW 24x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane elektryczne (Strumień)
MW 24x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 932 Mx | 139.3 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 24x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.98 kg | Standard |
| Woda (dno rzeki) |
11.43 kg
(+1.45 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o przekroju przynajmniej 10 mm
- o szlifowanej powierzchni styku
- w warunkach bezszczelinowych (metal do metalu)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Siła zgniatająca
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Samozapłon
Pył generowany podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Potężne pole
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Chronić przed dziećmi
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Niklowa powłoka a alergia
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Kruchy spiek
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
