MW 19x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010038
GTIN: 5906301810377
Średnica Ø
19 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
8.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.96 kg / 48.62 N
Indukcja magnetyczna
240.51 mT / 2405 Gs
Powłoka
[Zn] cynk
4.80 ZŁ z VAT / szt. + cena za transport
3.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz gdzie kupić?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie skontaktuj się przez
formularz zapytania
w sekcji kontakt.
Moc i budowę magnesu przetestujesz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 19x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 19x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010038 |
| GTIN | 5906301810377 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 19 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 8.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.96 kg / 48.62 N |
| Indukcja magnetyczna ~ ? | 240.51 mT / 2405 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - raport
Przedstawione wartości są rezultat analizy matematycznej. Wyniki oparte są na modelach dla materiału NdFeB. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MW 19x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2405 Gs
240.5 mT
|
4.96 kg / 4960.0 g
48.7 N
|
mocny |
| 1 mm |
2239 Gs
223.9 mT
|
4.30 kg / 4299.0 g
42.2 N
|
mocny |
| 2 mm |
2033 Gs
203.3 mT
|
3.55 kg / 3547.4 g
34.8 N
|
mocny |
| 3 mm |
1811 Gs
181.1 mT
|
2.81 kg / 2813.0 g
27.6 N
|
mocny |
| 5 mm |
1376 Gs
137.6 mT
|
1.63 kg / 1625.2 g
15.9 N
|
niskie ryzyko |
| 10 mm |
635 Gs
63.5 mT
|
0.35 kg / 346.3 g
3.4 N
|
niskie ryzyko |
| 15 mm |
308 Gs
30.8 mT
|
0.08 kg / 81.2 g
0.8 N
|
niskie ryzyko |
| 20 mm |
164 Gs
16.4 mT
|
0.02 kg / 23.2 g
0.2 N
|
niskie ryzyko |
| 30 mm |
61 Gs
6.1 mT
|
0.00 kg / 3.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
MW 19x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.99 kg / 992.0 g
9.7 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 860.0 g
8.4 N
|
| 2 mm | Stal (~0.2) |
0.71 kg / 710.0 g
7.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 562.0 g
5.5 N
|
| 5 mm | Stal (~0.2) |
0.33 kg / 326.0 g
3.2 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 70.0 g
0.7 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 19x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.49 kg / 1488.0 g
14.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.99 kg / 992.0 g
9.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.50 kg / 496.0 g
4.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.48 kg / 2480.0 g
24.3 N
|
MW 19x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.50 kg / 496.0 g
4.9 N
|
| 1 mm |
|
1.24 kg / 1240.0 g
12.2 N
|
| 2 mm |
|
2.48 kg / 2480.0 g
24.3 N
|
| 5 mm |
|
4.96 kg / 4960.0 g
48.7 N
|
| 10 mm |
|
4.96 kg / 4960.0 g
48.7 N
|
MW 19x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.96 kg / 4960.0 g
48.7 N
|
OK |
| 40 °C | -2.2% |
4.85 kg / 4850.9 g
47.6 N
|
OK |
| 60 °C | -4.4% |
4.74 kg / 4741.8 g
46.5 N
|
|
| 80 °C | -6.6% |
4.63 kg / 4632.6 g
45.4 N
|
|
| 100 °C | -28.8% |
3.53 kg / 3531.5 g
34.6 N
|
MW 19x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
10.11 kg / 10106 g
99.1 N
3 990 Gs
|
N/A |
| 1 mm |
9.48 kg / 9475 g
93.0 N
4 657 Gs
|
8.53 kg / 8528 g
83.7 N
~0 Gs
|
| 2 mm |
8.76 kg / 8759 g
85.9 N
4 477 Gs
|
7.88 kg / 7884 g
77.3 N
~0 Gs
|
| 3 mm |
8.00 kg / 8001 g
78.5 N
4 279 Gs
|
7.20 kg / 7201 g
70.6 N
~0 Gs
|
| 5 mm |
6.47 kg / 6465 g
63.4 N
3 846 Gs
|
5.82 kg / 5819 g
57.1 N
~0 Gs
|
| 10 mm |
3.31 kg / 3311 g
32.5 N
2 753 Gs
|
2.98 kg / 2980 g
29.2 N
~0 Gs
|
| 20 mm |
0.71 kg / 706 g
6.9 N
1 271 Gs
|
0.64 kg / 635 g
6.2 N
~0 Gs
|
| 50 mm |
0.02 kg / 16 g
0.2 N
193 Gs
|
0.01 kg / 15 g
0.1 N
~0 Gs
|
MW 19x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 19x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.39 km/h
(7.05 m/s)
|
0.21 J | |
| 30 mm |
42.19 km/h
(11.72 m/s)
|
0.58 J | |
| 50 mm |
54.44 km/h
(15.12 m/s)
|
0.97 J | |
| 100 mm |
76.99 km/h
(21.39 m/s)
|
1.95 J |
MW 19x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
MW 19x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 831 Mx | 78.3 µWb |
| Współczynnik Pc | 0.30 | Niski (Płaski) |
MW 19x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.96 kg | Standard |
| Woda (dno rzeki) |
5.68 kg
(+0.72 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne oferty
Wady oraz zalety neodymowych magnesów NdFeB.
Warto zwrócić uwagę, że obok ekstremalnej mocy, magnesy te cechują się następującymi zaletami:
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Moc magnesu to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
Należy pamiętać, że udźwig roboczy będzie inne pod wpływem poniższych elementów, w kolejności ważności:
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
* Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Wady oraz zalety neodymowych magnesów NdFeB.
Warto zwrócić uwagę, że obok ekstremalnej mocy, magnesy te cechują się następującymi zaletami:
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Moc magnesu to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
Należy pamiętać, że udźwig roboczy będzie inne pod wpływem poniższych elementów, w kolejności ważności:
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
* Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Zagrożenie fizyczne
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Urządzenia elektroniczne
Potężne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Uwaga: zadławienie
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Kruchość materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Nadwrażliwość na metale
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Safety First!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
