MW 15x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010032
GTIN/EAN: 5906301810315
Średnica Ø
15 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
10.6 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.37 kg / 72.28 N
Indukcja magnetyczna
451.96 mT / 4520 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
formularz zapytania
w sekcji kontakt.
Masę i formę magnesów neodymowych testujesz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 15x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010032 |
| GTIN/EAN | 5906301810315 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 10.6 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.37 kg / 72.28 N |
| Indukcja magnetyczna ~ ? | 451.96 mT / 4520 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe informacje stanowią wynik symulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 15x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4518 Gs
451.8 mT
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
średnie ryzyko |
| 1 mm |
3944 Gs
394.4 mT
|
5.62 kg / 12.38 lbs
5616.2 g / 55.1 N
|
średnie ryzyko |
| 2 mm |
3362 Gs
336.2 mT
|
4.08 kg / 9.00 lbs
4083.1 g / 40.1 N
|
średnie ryzyko |
| 3 mm |
2820 Gs
282.0 mT
|
2.87 kg / 6.33 lbs
2871.9 g / 28.2 N
|
średnie ryzyko |
| 5 mm |
1931 Gs
193.1 mT
|
1.35 kg / 2.97 lbs
1346.9 g / 13.2 N
|
niskie ryzyko |
| 10 mm |
763 Gs
76.3 mT
|
0.21 kg / 0.46 lbs
210.3 g / 2.1 N
|
niskie ryzyko |
| 15 mm |
349 Gs
34.9 mT
|
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
niskie ryzyko |
| 20 mm |
184 Gs
18.4 mT
|
0.01 kg / 0.03 lbs
12.2 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 15x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| 1 mm | Stal (~0.2) |
1.12 kg / 2.48 lbs
1124.0 g / 11.0 N
|
| 2 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
816.0 g / 8.0 N
|
| 3 mm | Stal (~0.2) |
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 15x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.21 kg / 4.87 lbs
2211.0 g / 21.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.74 kg / 1.62 lbs
737.0 g / 7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.69 kg / 8.12 lbs
3685.0 g / 36.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 15x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.62 lbs
737.0 g / 7.2 N
|
| 1 mm |
|
1.84 kg / 4.06 lbs
1842.5 g / 18.1 N
|
| 2 mm |
|
3.69 kg / 8.12 lbs
3685.0 g / 36.1 N
|
| 3 mm |
|
5.53 kg / 12.19 lbs
5527.5 g / 54.2 N
|
| 5 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 10 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 11 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 12 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 15x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
OK |
| 40 °C | -2.2% |
7.21 kg / 15.89 lbs
7207.9 g / 70.7 N
|
OK |
| 60 °C | -4.4% |
7.05 kg / 15.53 lbs
7045.7 g / 69.1 N
|
OK |
| 80 °C | -6.6% |
6.88 kg / 15.18 lbs
6883.6 g / 67.5 N
|
|
| 100 °C | -28.8% |
5.25 kg / 11.57 lbs
5247.4 g / 51.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 15x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.23 kg / 49.02 lbs
5 606 Gs
|
3.34 kg / 7.35 lbs
3335 g / 32.7 N
|
N/A |
| 1 mm |
19.55 kg / 43.11 lbs
8 473 Gs
|
2.93 kg / 6.47 lbs
2933 g / 28.8 N
|
17.60 kg / 38.80 lbs
~0 Gs
|
| 2 mm |
16.94 kg / 37.35 lbs
7 887 Gs
|
2.54 kg / 5.60 lbs
2541 g / 24.9 N
|
15.25 kg / 33.62 lbs
~0 Gs
|
| 3 mm |
14.52 kg / 32.00 lbs
7 301 Gs
|
2.18 kg / 4.80 lbs
2178 g / 21.4 N
|
13.07 kg / 28.80 lbs
~0 Gs
|
| 5 mm |
10.37 kg / 22.85 lbs
6 169 Gs
|
1.55 kg / 3.43 lbs
1555 g / 15.3 N
|
9.33 kg / 20.57 lbs
~0 Gs
|
| 10 mm |
4.06 kg / 8.96 lbs
3 862 Gs
|
0.61 kg / 1.34 lbs
609 g / 6.0 N
|
3.66 kg / 8.06 lbs
~0 Gs
|
| 20 mm |
0.63 kg / 1.40 lbs
1 526 Gs
|
0.10 kg / 0.21 lbs
95 g / 0.9 N
|
0.57 kg / 1.26 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
215 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
136 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
91 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 15x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 15x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.06 km/h
(7.52 m/s)
|
0.30 J | |
| 30 mm |
46.07 km/h
(12.80 m/s)
|
0.87 J | |
| 50 mm |
59.46 km/h
(16.52 m/s)
|
1.45 J | |
| 100 mm |
84.09 km/h
(23.36 m/s)
|
2.89 J |
Tabela 9: Parametry powłoki (trwałość)
MW 15x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 15x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 074 Mx | 80.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 15x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.37 kg | Standard |
| Woda (dno rzeki) |
8.44 kg
(+1.07 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi jedynie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią idealnie równą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Wpływ na smartfony
Uwaga: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Produkt nie dla dzieci
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Bezpieczny dystans
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Bezpieczna praca
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Zagrożenie fizyczne
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kruchy spiek
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Trwała utrata siły
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ostrzeżenie dla alergików
Część populacji posiada alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może skutkować zaczerwienienie skóry. Zalecamy noszenie rękawiczek ochronnych.
