MW 15x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010028
GTIN/EAN: 5906301810278
Średnica Ø
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.51 kg / 14.84 N
Indukcja magnetyczna
159.70 mT / 1597 Gs
Powłoka
[NiCuNi] nikiel
1.218 ZŁ z VAT / szt. + cena za transport
0.990 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Właściwości i wygląd magnesu skontrolujesz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
MW 15x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 15x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010028 |
| GTIN/EAN | 5906301810278 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.51 kg / 14.84 N |
| Indukcja magnetyczna ~ ? | 159.70 mT / 1597 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu - parametry techniczne
Przedstawione informacje stanowią rezultat analizy inżynierskiej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
MW 15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1597 Gs
159.7 mT
|
1.51 kg / 1510.0 g
14.8 N
|
bezpieczny |
| 1 mm |
1483 Gs
148.3 mT
|
1.30 kg / 1303.0 g
12.8 N
|
bezpieczny |
| 2 mm |
1320 Gs
132.0 mT
|
1.03 kg / 1032.2 g
10.1 N
|
bezpieczny |
| 3 mm |
1137 Gs
113.7 mT
|
0.77 kg / 765.0 g
7.5 N
|
bezpieczny |
| 5 mm |
791 Gs
79.1 mT
|
0.37 kg / 370.8 g
3.6 N
|
bezpieczny |
| 10 mm |
298 Gs
29.8 mT
|
0.05 kg / 52.5 g
0.5 N
|
bezpieczny |
| 15 mm |
127 Gs
12.7 mT
|
0.01 kg / 9.6 g
0.1 N
|
bezpieczny |
| 20 mm |
63 Gs
6.3 mT
|
0.00 kg / 2.4 g
0.0 N
|
bezpieczny |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.30 kg / 302.0 g
3.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 2 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 154.0 g
1.5 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.45 kg / 453.0 g
4.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.30 kg / 302.0 g
3.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 151.0 g
1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.76 kg / 755.0 g
7.4 N
|
MW 15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 151.0 g
1.5 N
|
| 1 mm |
|
0.38 kg / 377.5 g
3.7 N
|
| 2 mm |
|
0.76 kg / 755.0 g
7.4 N
|
| 5 mm |
|
1.51 kg / 1510.0 g
14.8 N
|
| 10 mm |
|
1.51 kg / 1510.0 g
14.8 N
|
MW 15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.51 kg / 1510.0 g
14.8 N
|
OK |
| 40 °C | -2.2% |
1.48 kg / 1476.8 g
14.5 N
|
OK |
| 60 °C | -4.4% |
1.44 kg / 1443.6 g
14.2 N
|
|
| 80 °C | -6.6% |
1.41 kg / 1410.3 g
13.8 N
|
|
| 100 °C | -28.8% |
1.08 kg / 1075.1 g
10.5 N
|
MW 15x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.78 kg / 2777 g
27.2 N
2 915 Gs
|
N/A |
| 1 mm |
2.61 kg / 2611 g
25.6 N
3 096 Gs
|
2.35 kg / 2350 g
23.1 N
~0 Gs
|
| 2 mm |
2.40 kg / 2397 g
23.5 N
2 966 Gs
|
2.16 kg / 2157 g
21.2 N
~0 Gs
|
| 3 mm |
2.15 kg / 2154 g
21.1 N
2 812 Gs
|
1.94 kg / 1938 g
19.0 N
~0 Gs
|
| 5 mm |
1.65 kg / 1646 g
16.1 N
2 459 Gs
|
1.48 kg / 1482 g
14.5 N
~0 Gs
|
| 10 mm |
0.68 kg / 682 g
6.7 N
1 582 Gs
|
0.61 kg / 614 g
6.0 N
~0 Gs
|
| 20 mm |
0.10 kg / 96 g
0.9 N
595 Gs
|
0.09 kg / 87 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
71 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.59 km/h
(6.83 m/s)
|
0.06 J | |
| 30 mm |
41.70 km/h
(11.58 m/s)
|
0.18 J | |
| 50 mm |
53.83 km/h
(14.95 m/s)
|
0.30 J | |
| 100 mm |
76.13 km/h
(21.15 m/s)
|
0.59 J |
MW 15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 541 Mx | 35.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
MW 15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.51 kg | Standard |
| Woda (dno rzeki) |
1.73 kg
(+0.22 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z użyciem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- której wymiar poprzeczny wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (brak farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza udźwig.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Pole magnetyczne a elektronika
Potężne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Nadwrażliwość na metale
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może powodować wysypkę. Sugerujemy stosowanie rękawiczek ochronnych.
Kruchy spiek
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Niebezpieczeństwo dla rozruszników
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.
Nie lekceważ mocy
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Urazy ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Zakaz zabawy
Neodymowe magnesy nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
