Neodymy – szeroki wybór kształtów

Chcesz kupić naprawdę silne magnesy? Oferujemy bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do użytku w domu, garażu oraz zadań przemysłowych. Przejrzyj asortyment dostępne od ręki.

zobacz cennik i wymiary

Zestawy do magnet fishing (hobbystów)

Odkryj pasję z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny są niezawodne w trudnych warunkach wodnych.

znajdź sprzęt do poszukiwań

Profesjonalne uchwyty z gwintem

Niezawodne rozwiązania do montażu bez wiercenia. Mocowania gwintowane (M8, M10, M12) zapewniają szybkie usprawnienie pracy na halach produkcyjnych. Są niezastąpione przy instalacji oświetlenia, czujników oraz reklam.

zobacz dostępne gwinty

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 15x2 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010028

GTIN/EAN: 5906301810278

5.00

Średnica Ø

15 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

2.65 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.51 kg / 14.84 N

Indukcja magnetyczna

159.70 mT / 1597 Gs

Powłoka

[NiCuNi] nikiel

1.218 z VAT / szt. + cena za transport

0.990 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.990 ZŁ
1.218 ZŁ
cena od 700 szt.
0.931 ZŁ
1.145 ZŁ
cena od 2600 szt.
0.871 ZŁ
1.072 ZŁ
Chcesz się targować?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 alternatywnie pisz przez formularz zapytania na stronie kontakt.
Masę i kształt magnesu neodymowego skontrolujesz u nas w narzędziu online do obliczeń.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Właściwości fizyczne MW 15x2 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 15x2 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010028
GTIN/EAN 5906301810278
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 15 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 2.65 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.51 kg / 14.84 N
Indukcja magnetyczna ~ ? 159.70 mT / 1597 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 15x2 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu - raport

Poniższe informacje stanowią wynik symulacji fizycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 15x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1597 Gs
159.7 mT
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
bezpieczny
1 mm 1483 Gs
148.3 mT
1.30 kg / 2.87 lbs
1303.0 g / 12.8 N
bezpieczny
2 mm 1320 Gs
132.0 mT
1.03 kg / 2.28 lbs
1032.2 g / 10.1 N
bezpieczny
3 mm 1137 Gs
113.7 mT
0.77 kg / 1.69 lbs
765.0 g / 7.5 N
bezpieczny
5 mm 791 Gs
79.1 mT
0.37 kg / 0.82 lbs
370.8 g / 3.6 N
bezpieczny
10 mm 298 Gs
29.8 mT
0.05 kg / 0.12 lbs
52.5 g / 0.5 N
bezpieczny
15 mm 127 Gs
12.7 mT
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
bezpieczny
20 mm 63 Gs
6.3 mT
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
bezpieczny
30 mm 22 Gs
2.2 mT
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
bezpieczny
50 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (ściana)
MW 15x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.30 kg / 0.67 lbs
302.0 g / 3.0 N
1 mm Stal (~0.2) 0.26 kg / 0.57 lbs
260.0 g / 2.6 N
2 mm Stal (~0.2) 0.21 kg / 0.45 lbs
206.0 g / 2.0 N
3 mm Stal (~0.2) 0.15 kg / 0.34 lbs
154.0 g / 1.5 N
5 mm Stal (~0.2) 0.07 kg / 0.16 lbs
74.0 g / 0.7 N
10 mm Stal (~0.2) 0.01 kg / 0.02 lbs
10.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 15x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.45 kg / 1.00 lbs
453.0 g / 4.4 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.30 kg / 0.67 lbs
302.0 g / 3.0 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.76 kg / 1.66 lbs
755.0 g / 7.4 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 15x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
1 mm
25%
0.38 kg / 0.83 lbs
377.5 g / 3.7 N
2 mm
50%
0.76 kg / 1.66 lbs
755.0 g / 7.4 N
3 mm
75%
1.13 kg / 2.50 lbs
1132.5 g / 11.1 N
5 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
10 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
11 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
12 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 15x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
OK
40 °C -2.2% 1.48 kg / 3.26 lbs
1476.8 g / 14.5 N
OK
60 °C -4.4% 1.44 kg / 3.18 lbs
1443.6 g / 14.2 N
80 °C -6.6% 1.41 kg / 3.11 lbs
1410.3 g / 13.8 N
100 °C -28.8% 1.08 kg / 2.37 lbs
1075.1 g / 10.5 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 15x2 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.78 kg / 6.12 lbs
2 915 Gs
0.42 kg / 0.92 lbs
417 g / 4.1 N
N/A
1 mm 2.61 kg / 5.76 lbs
3 096 Gs
0.39 kg / 0.86 lbs
392 g / 3.8 N
2.35 kg / 5.18 lbs
~0 Gs
2 mm 2.40 kg / 5.28 lbs
2 966 Gs
0.36 kg / 0.79 lbs
360 g / 3.5 N
2.16 kg / 4.76 lbs
~0 Gs
3 mm 2.15 kg / 4.75 lbs
2 812 Gs
0.32 kg / 0.71 lbs
323 g / 3.2 N
1.94 kg / 4.27 lbs
~0 Gs
5 mm 1.65 kg / 3.63 lbs
2 459 Gs
0.25 kg / 0.54 lbs
247 g / 2.4 N
1.48 kg / 3.27 lbs
~0 Gs
10 mm 0.68 kg / 1.50 lbs
1 582 Gs
0.10 kg / 0.23 lbs
102 g / 1.0 N
0.61 kg / 1.35 lbs
~0 Gs
20 mm 0.10 kg / 0.21 lbs
595 Gs
0.01 kg / 0.03 lbs
14 g / 0.1 N
0.09 kg / 0.19 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
71 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
43 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
28 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
14 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 15x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 5.5 cm
Implant słuchowy 10 Gs (1.0 mT) 4.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 24.59 km/h
(6.83 m/s)
0.06 J
30 mm 41.70 km/h
(11.58 m/s)
0.18 J
50 mm 53.83 km/h
(14.95 m/s)
0.30 J
100 mm 76.13 km/h
(21.15 m/s)
0.59 J

Tabela 9: Odporność na korozję
MW 15x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 15x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 3 541 Mx 35.4 µWb
Współczynnik Pc 0.20 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MW 15x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.51 kg Standard
Woda (dno rzeki) 1.73 kg
(+0.22 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły oderwania.

2. Nasycenie magnetyczne

*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.

3. Stabilność termiczna

*W klasie N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010028-2026
Kalkulator miar
Siła oderwania

Pole magnetyczne

Inne oferty

Prezentowany produkt to wyjątkowo silny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø15x2 mm gwarantuje optymalną moc. Model MW 15x2 / N38 cechuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 1.51 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 14.84 N przy wadze zaledwie 2.65 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, zalecanym sposobem jest wklejanie ich w otwory o średnicy minimalnie większej (np. 15,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy N38 są wystarczająco silne do 90% zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø15x2), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø15x2 mm, co przy wadze 2.65 g czyni go elementem o wysokiej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.51 kg (siła ~14.84 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 15 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety neodymowych magnesów Nd2Fe14B.

Zalety

Neodymy to nie tylko moc przyciągania, ale także inne istotne cechy, takie jak::
  • Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
  • Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
  • Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.

Ograniczenia

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
  • Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Analiza siły trzymania

Maksymalna siła przyciągania magnesuod czego zależy?

Moc magnesu to rezultat pomiaru dla warunków idealnego styku, obejmującej:
  • na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
  • o przekroju przynajmniej 10 mm
  • z płaszczyzną oczyszczoną i gładką
  • przy zerowej szczelinie (brak zanieczyszczeń)
  • dla siły przyłożonej pod kątem prostym (w osi magnesu)
  • w standardowej temperaturze otoczenia

Co wpływa na udźwig w praktyce

W rzeczywistych zastosowaniach, faktyczna siła trzymania zależy od kilku kluczowych aspektów, uszeregowanych od najbardziej istotnych:
  • Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
  • Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
  • Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
  • Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
  • Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża siłę trzymania.

Bezpieczna praca przy magnesach neodymowych
Podatność na pękanie

Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.

Nadwrażliwość na metale

Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Wskazane jest używanie rękawiczek ochronnych.

Świadome użytkowanie

Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.

Samozapłon

Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.

Nie zbliżaj do komputera

Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.

Utrata mocy w cieple

Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).

Niebezpieczeństwo przytrzaśnięcia

Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.

Uwaga medyczna

Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.

Zagrożenie dla najmłodszych

Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.

Elektronika precyzyjna

Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.

Ważne! Szukasz szczegółów? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98