MW 15x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010029
GTIN/EAN: 5906301810285
Średnica Ø
15 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.98 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.87 kg / 28.14 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.624 ZŁ z VAT / szt. + cena za transport
1.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo daj znać poprzez
formularz kontaktowy
na stronie kontaktowej.
Udźwig oraz budowę magnesu neodymowego wyliczysz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 15x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010029 |
| GTIN/EAN | 5906301810285 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.98 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.87 kg / 28.14 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 15x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2301 Gs
230.1 mT
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
uwaga |
| 1 mm |
2098 Gs
209.8 mT
|
2.39 kg / 5.26 lbs
2386.5 g / 23.4 N
|
uwaga |
| 2 mm |
1842 Gs
184.2 mT
|
1.84 kg / 4.05 lbs
1838.5 g / 18.0 N
|
słaby uchwyt |
| 3 mm |
1570 Gs
157.0 mT
|
1.34 kg / 2.95 lbs
1337.0 g / 13.1 N
|
słaby uchwyt |
| 5 mm |
1084 Gs
108.4 mT
|
0.64 kg / 1.40 lbs
637.0 g / 6.2 N
|
słaby uchwyt |
| 10 mm |
410 Gs
41.0 mT
|
0.09 kg / 0.20 lbs
91.3 g / 0.9 N
|
słaby uchwyt |
| 15 mm |
178 Gs
17.8 mT
|
0.02 kg / 0.04 lbs
17.1 g / 0.2 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.01 lbs
4.3 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 15x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
478.0 g / 4.7 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
268.0 g / 2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 15x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.86 kg / 1.90 lbs
861.0 g / 8.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.29 kg / 0.63 lbs
287.0 g / 2.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.44 kg / 3.16 lbs
1435.0 g / 14.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 15x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.29 kg / 0.63 lbs
287.0 g / 2.8 N
|
| 1 mm |
|
0.72 kg / 1.58 lbs
717.5 g / 7.0 N
|
| 2 mm |
|
1.44 kg / 3.16 lbs
1435.0 g / 14.1 N
|
| 3 mm |
|
2.15 kg / 4.75 lbs
2152.5 g / 21.1 N
|
| 5 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
| 10 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
| 11 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
| 12 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 15x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
OK |
| 40 °C | -2.2% |
2.81 kg / 6.19 lbs
2806.9 g / 27.5 N
|
OK |
| 60 °C | -4.4% |
2.74 kg / 6.05 lbs
2743.7 g / 26.9 N
|
|
| 80 °C | -6.6% |
2.68 kg / 5.91 lbs
2680.6 g / 26.3 N
|
|
| 100 °C | -28.8% |
2.04 kg / 4.51 lbs
2043.4 g / 20.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 15x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.77 kg / 12.72 lbs
3 869 Gs
|
0.87 kg / 1.91 lbs
865 g / 8.5 N
|
N/A |
| 1 mm |
5.32 kg / 11.73 lbs
4 419 Gs
|
0.80 kg / 1.76 lbs
798 g / 7.8 N
|
4.79 kg / 10.55 lbs
~0 Gs
|
| 2 mm |
4.80 kg / 10.57 lbs
4 196 Gs
|
0.72 kg / 1.59 lbs
719 g / 7.1 N
|
4.32 kg / 9.52 lbs
~0 Gs
|
| 3 mm |
4.25 kg / 9.36 lbs
3 948 Gs
|
0.64 kg / 1.40 lbs
637 g / 6.2 N
|
3.82 kg / 8.42 lbs
~0 Gs
|
| 5 mm |
3.17 kg / 6.99 lbs
3 412 Gs
|
0.48 kg / 1.05 lbs
476 g / 4.7 N
|
2.85 kg / 6.29 lbs
~0 Gs
|
| 10 mm |
1.28 kg / 2.82 lbs
2 168 Gs
|
0.19 kg / 0.42 lbs
192 g / 1.9 N
|
1.15 kg / 2.54 lbs
~0 Gs
|
| 20 mm |
0.18 kg / 0.40 lbs
821 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.36 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
101 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 15x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.62 km/h
(7.67 m/s)
|
0.12 J | |
| 30 mm |
46.91 km/h
(13.03 m/s)
|
0.34 J | |
| 50 mm |
60.56 km/h
(16.82 m/s)
|
0.56 J | |
| 100 mm |
85.64 km/h
(23.79 m/s)
|
1.13 J |
Tabela 9: Parametry powłoki (trwałość)
MW 15x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 15x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 718 Mx | 47.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 15x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.87 kg | Standard |
| Woda (dno rzeki) |
3.29 kg
(+0.42 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi tylko ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- której grubość to min. 10 mm
- z płaszczyzną oczyszczoną i gładką
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Reakcje alergiczne
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Ryzyko pęknięcia
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Przegrzanie magnesu
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Uszkodzenia ciała
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Chronić przed dziećmi
Te produkty magnetyczne to nie zabawki. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Zagrożenie zapłonem
Pył powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Smartfony i tablety
Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
