MW 14x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010391
GTIN/EAN: 5906301811084
Średnica Ø
14 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
11.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.71 kg / 65.83 N
Indukcja magnetyczna
507.48 mT / 5075 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie napisz za pomocą
formularz
na stronie kontaktowej.
Siłę oraz kształt elementów magnetycznych skontrolujesz u nas w
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MW 14x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010391 |
| GTIN/EAN | 5906301811084 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 11.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.71 kg / 65.83 N |
| Indukcja magnetyczna ~ ? | 507.48 mT / 5075 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane stanowią wynik symulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 14x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5072 Gs
507.2 mT
|
6.71 kg / 6710.0 g
65.8 N
|
uwaga |
| 1 mm |
4354 Gs
435.4 mT
|
4.94 kg / 4944.4 g
48.5 N
|
uwaga |
| 2 mm |
3652 Gs
365.2 mT
|
3.48 kg / 3479.0 g
34.1 N
|
uwaga |
| 3 mm |
3017 Gs
301.7 mT
|
2.37 kg / 2373.5 g
23.3 N
|
uwaga |
| 5 mm |
2015 Gs
201.5 mT
|
1.06 kg / 1058.7 g
10.4 N
|
bezpieczny |
| 10 mm |
773 Gs
77.3 mT
|
0.16 kg / 155.7 g
1.5 N
|
bezpieczny |
| 15 mm |
352 Gs
35.2 mT
|
0.03 kg / 32.3 g
0.3 N
|
bezpieczny |
| 20 mm |
186 Gs
18.6 mT
|
0.01 kg / 9.0 g
0.1 N
|
bezpieczny |
| 30 mm |
69 Gs
6.9 mT
|
0.00 kg / 1.3 g
0.0 N
|
bezpieczny |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 14x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.34 kg / 1342.0 g
13.2 N
|
| 1 mm | Stal (~0.2) |
0.99 kg / 988.0 g
9.7 N
|
| 2 mm | Stal (~0.2) |
0.70 kg / 696.0 g
6.8 N
|
| 3 mm | Stal (~0.2) |
0.47 kg / 474.0 g
4.6 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 212.0 g
2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 14x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.01 kg / 2013.0 g
19.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.34 kg / 1342.0 g
13.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 671.0 g
6.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.36 kg / 3355.0 g
32.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 14x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 671.0 g
6.6 N
|
| 1 mm |
|
1.68 kg / 1677.5 g
16.5 N
|
| 2 mm |
|
3.36 kg / 3355.0 g
32.9 N
|
| 5 mm |
|
6.71 kg / 6710.0 g
65.8 N
|
| 10 mm |
|
6.71 kg / 6710.0 g
65.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 14x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.71 kg / 6710.0 g
65.8 N
|
OK |
| 40 °C | -2.2% |
6.56 kg / 6562.4 g
64.4 N
|
OK |
| 60 °C | -4.4% |
6.41 kg / 6414.8 g
62.9 N
|
OK |
| 80 °C | -6.6% |
6.27 kg / 6267.1 g
61.5 N
|
|
| 100 °C | -28.8% |
4.78 kg / 4777.5 g
46.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 14x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
24.41 kg / 24414 g
239.5 N
5 843 Gs
|
N/A |
| 1 mm |
21.12 kg / 21116 g
207.1 N
9 434 Gs
|
19.00 kg / 19004 g
186.4 N
~0 Gs
|
| 2 mm |
17.99 kg / 17990 g
176.5 N
8 708 Gs
|
16.19 kg / 16191 g
158.8 N
~0 Gs
|
| 3 mm |
15.16 kg / 15161 g
148.7 N
7 994 Gs
|
13.65 kg / 13645 g
133.9 N
~0 Gs
|
| 5 mm |
10.49 kg / 10487 g
102.9 N
6 649 Gs
|
9.44 kg / 9439 g
92.6 N
~0 Gs
|
| 10 mm |
3.85 kg / 3852 g
37.8 N
4 029 Gs
|
3.47 kg / 3467 g
34.0 N
~0 Gs
|
| 20 mm |
0.57 kg / 567 g
5.6 N
1 545 Gs
|
0.51 kg / 510 g
5.0 N
~0 Gs
|
| 50 mm |
0.01 kg / 11 g
0.1 N
218 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 14x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 14x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.66 km/h
(6.85 m/s)
|
0.27 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.79 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.32 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.63 J |
Tabela 9: Parametry powłoki (trwałość)
MW 14x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 14x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 886 Mx | 78.9 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 14x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.71 kg | Standard |
| Woda (dno rzeki) |
7.68 kg
(+0.97 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między magnesem, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Ryzyko uczulenia
Część populacji wykazuje uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może skutkować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Urazy ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Chronić przed dziećmi
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Ostrzeżenie dla sercowców
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może rozregulować pracę implantu.
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
