MW 14x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010391
GTIN/EAN: 5906301811084
Średnica Ø
14 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
11.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.71 kg / 65.83 N
Indukcja magnetyczna
507.48 mT / 5075 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub skontaktuj się za pomocą
formularz
na stronie kontaktowej.
Masę oraz kształt magnesów neodymowych testujesz dzięki naszemu
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja techniczna - MW 14x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010391 |
| GTIN/EAN | 5906301811084 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 11.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.71 kg / 65.83 N |
| Indukcja magnetyczna ~ ? | 507.48 mT / 5075 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione informacje są wynik analizy fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 14x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5072 Gs
507.2 mT
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
mocny |
| 1 mm |
4354 Gs
435.4 mT
|
4.94 kg / 10.90 lbs
4944.4 g / 48.5 N
|
mocny |
| 2 mm |
3652 Gs
365.2 mT
|
3.48 kg / 7.67 lbs
3479.0 g / 34.1 N
|
mocny |
| 3 mm |
3017 Gs
301.7 mT
|
2.37 kg / 5.23 lbs
2373.5 g / 23.3 N
|
mocny |
| 5 mm |
2015 Gs
201.5 mT
|
1.06 kg / 2.33 lbs
1058.7 g / 10.4 N
|
słaby uchwyt |
| 10 mm |
773 Gs
77.3 mT
|
0.16 kg / 0.34 lbs
155.7 g / 1.5 N
|
słaby uchwyt |
| 15 mm |
352 Gs
35.2 mT
|
0.03 kg / 0.07 lbs
32.3 g / 0.3 N
|
słaby uchwyt |
| 20 mm |
186 Gs
18.6 mT
|
0.01 kg / 0.02 lbs
9.0 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 14x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.34 kg / 2.96 lbs
1342.0 g / 13.2 N
|
| 1 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 2 mm | Stal (~0.2) |
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| 3 mm | Stal (~0.2) |
0.47 kg / 1.04 lbs
474.0 g / 4.6 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
212.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 14x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.01 kg / 4.44 lbs
2013.0 g / 19.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.34 kg / 2.96 lbs
1342.0 g / 13.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 1.48 lbs
671.0 g / 6.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.36 kg / 7.40 lbs
3355.0 g / 32.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 14x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 1.48 lbs
671.0 g / 6.6 N
|
| 1 mm |
|
1.68 kg / 3.70 lbs
1677.5 g / 16.5 N
|
| 2 mm |
|
3.36 kg / 7.40 lbs
3355.0 g / 32.9 N
|
| 3 mm |
|
5.03 kg / 11.09 lbs
5032.5 g / 49.4 N
|
| 5 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 10 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 11 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 12 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 14x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
OK |
| 40 °C | -2.2% |
6.56 kg / 14.47 lbs
6562.4 g / 64.4 N
|
OK |
| 60 °C | -4.4% |
6.41 kg / 14.14 lbs
6414.8 g / 62.9 N
|
OK |
| 80 °C | -6.6% |
6.27 kg / 13.82 lbs
6267.1 g / 61.5 N
|
|
| 100 °C | -28.8% |
4.78 kg / 10.53 lbs
4777.5 g / 46.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 14x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
24.41 kg / 53.82 lbs
5 843 Gs
|
3.66 kg / 8.07 lbs
3662 g / 35.9 N
|
N/A |
| 1 mm |
21.12 kg / 46.55 lbs
9 434 Gs
|
3.17 kg / 6.98 lbs
3167 g / 31.1 N
|
19.00 kg / 41.90 lbs
~0 Gs
|
| 2 mm |
17.99 kg / 39.66 lbs
8 708 Gs
|
2.70 kg / 5.95 lbs
2699 g / 26.5 N
|
16.19 kg / 35.70 lbs
~0 Gs
|
| 3 mm |
15.16 kg / 33.43 lbs
7 994 Gs
|
2.27 kg / 5.01 lbs
2274 g / 22.3 N
|
13.65 kg / 30.08 lbs
~0 Gs
|
| 5 mm |
10.49 kg / 23.12 lbs
6 649 Gs
|
1.57 kg / 3.47 lbs
1573 g / 15.4 N
|
9.44 kg / 20.81 lbs
~0 Gs
|
| 10 mm |
3.85 kg / 8.49 lbs
4 029 Gs
|
0.58 kg / 1.27 lbs
578 g / 5.7 N
|
3.47 kg / 7.64 lbs
~0 Gs
|
| 20 mm |
0.57 kg / 1.25 lbs
1 545 Gs
|
0.08 kg / 0.19 lbs
85 g / 0.8 N
|
0.51 kg / 1.12 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
218 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
139 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
93 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 14x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 14x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.66 km/h
(6.85 m/s)
|
0.27 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.79 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.32 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.63 J |
Tabela 9: Parametry powłoki (trwałość)
MW 14x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 14x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 886 Mx | 78.9 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 14x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.71 kg | Standard |
| Woda (dno rzeki) |
7.68 kg
(+0.97 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans (między magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig określano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Bezpieczna praca z magnesami neodymowymi
Wpływ na smartfony
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Nie zbliżaj do komputera
Ekstremalne oddziaływanie może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Uwaga na odpryski
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Łatwopalność
Pył generowany podczas szlifowania magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zakaz zabawy
Magnesy neodymowe to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
