MW 14x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010391
GTIN/EAN: 5906301811084
Średnica Ø
14 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
11.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.71 kg / 65.83 N
Indukcja magnetyczna
507.48 mT / 5075 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie skontaktuj się poprzez
nasz formularz online
przez naszą stronę.
Parametry i budowę magnesu przetestujesz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna - MW 14x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010391 |
| GTIN/EAN | 5906301811084 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 11.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.71 kg / 65.83 N |
| Indukcja magnetyczna ~ ? | 507.48 mT / 5075 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Przedstawione informacje stanowią rezultat symulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 14x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5072 Gs
507.2 mT
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
średnie ryzyko |
| 1 mm |
4354 Gs
435.4 mT
|
4.94 kg / 10.90 lbs
4944.4 g / 48.5 N
|
średnie ryzyko |
| 2 mm |
3652 Gs
365.2 mT
|
3.48 kg / 7.67 lbs
3479.0 g / 34.1 N
|
średnie ryzyko |
| 3 mm |
3017 Gs
301.7 mT
|
2.37 kg / 5.23 lbs
2373.5 g / 23.3 N
|
średnie ryzyko |
| 5 mm |
2015 Gs
201.5 mT
|
1.06 kg / 2.33 lbs
1058.7 g / 10.4 N
|
słaby uchwyt |
| 10 mm |
773 Gs
77.3 mT
|
0.16 kg / 0.34 lbs
155.7 g / 1.5 N
|
słaby uchwyt |
| 15 mm |
352 Gs
35.2 mT
|
0.03 kg / 0.07 lbs
32.3 g / 0.3 N
|
słaby uchwyt |
| 20 mm |
186 Gs
18.6 mT
|
0.01 kg / 0.02 lbs
9.0 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 14x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.34 kg / 2.96 lbs
1342.0 g / 13.2 N
|
| 1 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 2 mm | Stal (~0.2) |
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| 3 mm | Stal (~0.2) |
0.47 kg / 1.04 lbs
474.0 g / 4.6 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
212.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 14x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.01 kg / 4.44 lbs
2013.0 g / 19.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.34 kg / 2.96 lbs
1342.0 g / 13.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 1.48 lbs
671.0 g / 6.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.36 kg / 7.40 lbs
3355.0 g / 32.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 14x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 1.48 lbs
671.0 g / 6.6 N
|
| 1 mm |
|
1.68 kg / 3.70 lbs
1677.5 g / 16.5 N
|
| 2 mm |
|
3.36 kg / 7.40 lbs
3355.0 g / 32.9 N
|
| 3 mm |
|
5.03 kg / 11.09 lbs
5032.5 g / 49.4 N
|
| 5 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 10 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 11 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 12 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 14x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
OK |
| 40 °C | -2.2% |
6.56 kg / 14.47 lbs
6562.4 g / 64.4 N
|
OK |
| 60 °C | -4.4% |
6.41 kg / 14.14 lbs
6414.8 g / 62.9 N
|
OK |
| 80 °C | -6.6% |
6.27 kg / 13.82 lbs
6267.1 g / 61.5 N
|
|
| 100 °C | -28.8% |
4.78 kg / 10.53 lbs
4777.5 g / 46.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 14x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
24.41 kg / 53.82 lbs
5 843 Gs
|
3.66 kg / 8.07 lbs
3662 g / 35.9 N
|
N/A |
| 1 mm |
21.12 kg / 46.55 lbs
9 434 Gs
|
3.17 kg / 6.98 lbs
3167 g / 31.1 N
|
19.00 kg / 41.90 lbs
~0 Gs
|
| 2 mm |
17.99 kg / 39.66 lbs
8 708 Gs
|
2.70 kg / 5.95 lbs
2699 g / 26.5 N
|
16.19 kg / 35.70 lbs
~0 Gs
|
| 3 mm |
15.16 kg / 33.43 lbs
7 994 Gs
|
2.27 kg / 5.01 lbs
2274 g / 22.3 N
|
13.65 kg / 30.08 lbs
~0 Gs
|
| 5 mm |
10.49 kg / 23.12 lbs
6 649 Gs
|
1.57 kg / 3.47 lbs
1573 g / 15.4 N
|
9.44 kg / 20.81 lbs
~0 Gs
|
| 10 mm |
3.85 kg / 8.49 lbs
4 029 Gs
|
0.58 kg / 1.27 lbs
578 g / 5.7 N
|
3.47 kg / 7.64 lbs
~0 Gs
|
| 20 mm |
0.57 kg / 1.25 lbs
1 545 Gs
|
0.08 kg / 0.19 lbs
85 g / 0.8 N
|
0.51 kg / 1.12 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
218 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
139 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
93 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 14x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 14x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.66 km/h
(6.85 m/s)
|
0.27 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.79 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.32 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.63 J |
Tabela 9: Parametry powłoki (trwałość)
MW 14x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 14x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 886 Mx | 78.9 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 14x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.71 kg | Standard |
| Woda (dno rzeki) |
7.68 kg
(+0.97 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają estetyczny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, działającej jako element zamykający obwód
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- przy całkowitym braku odstępu (bez farby)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje udźwig.
Zasady BHP dla użytkowników magnesów
Uwaga na odpryski
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Nie dawać dzieciom
Te produkty magnetyczne nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Implanty kardiologiczne
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Ogromna siła
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Uszkodzenia ciała
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni między dwa silne magnesy.
Elektronika precyzyjna
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Reakcje alergiczne
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
