MPL 60x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020474
GTIN/EAN: 5906301811947
Długość
60 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
18.16 kg / 178.10 N
Indukcja magnetyczna
315.09 mT / 3151 Gs
Powłoka
[NiCuNi] nikiel
19.00 ZŁ z VAT / szt. + cena za transport
15.45 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo napisz za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Moc a także budowę magnesów neodymowych testujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MPL 60x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 60x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020474 |
| GTIN/EAN | 5906301811947 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 18.16 kg / 178.10 N |
| Indukcja magnetyczna ~ ? | 315.09 mT / 3151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione dane są bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 60x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3149 Gs
314.9 mT
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
krytyczny poziom |
| 1 mm |
2731 Gs
273.1 mT
|
13.66 kg / 30.11 lbs
13658.3 g / 134.0 N
|
krytyczny poziom |
| 2 mm |
2302 Gs
230.2 mT
|
9.70 kg / 21.38 lbs
9698.4 g / 95.1 N
|
średnie ryzyko |
| 3 mm |
1912 Gs
191.2 mT
|
6.70 kg / 14.76 lbs
6696.5 g / 65.7 N
|
średnie ryzyko |
| 5 mm |
1317 Gs
131.7 mT
|
3.18 kg / 7.00 lbs
3176.9 g / 31.2 N
|
średnie ryzyko |
| 10 mm |
598 Gs
59.8 mT
|
0.65 kg / 1.44 lbs
653.8 g / 6.4 N
|
słaby uchwyt |
| 15 mm |
330 Gs
33.0 mT
|
0.20 kg / 0.44 lbs
199.2 g / 2.0 N
|
słaby uchwyt |
| 20 mm |
205 Gs
20.5 mT
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
słaby uchwyt |
| 30 mm |
96 Gs
9.6 mT
|
0.02 kg / 0.04 lbs
16.9 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 60x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.63 kg / 8.01 lbs
3632.0 g / 35.6 N
|
| 1 mm | Stal (~0.2) |
2.73 kg / 6.02 lbs
2732.0 g / 26.8 N
|
| 2 mm | Stal (~0.2) |
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
| 3 mm | Stal (~0.2) |
1.34 kg / 2.95 lbs
1340.0 g / 13.1 N
|
| 5 mm | Stal (~0.2) |
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 60x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.45 kg / 12.01 lbs
5448.0 g / 53.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.63 kg / 8.01 lbs
3632.0 g / 35.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.82 kg / 4.00 lbs
1816.0 g / 17.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.08 kg / 20.02 lbs
9080.0 g / 89.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 60x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 1 mm |
|
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| 2 mm |
|
4.54 kg / 10.01 lbs
4540.0 g / 44.5 N
|
| 3 mm |
|
6.81 kg / 15.01 lbs
6810.0 g / 66.8 N
|
| 5 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 10 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
| 11 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
| 12 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 60x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
OK |
| 40 °C | -2.2% |
17.76 kg / 39.16 lbs
17760.5 g / 174.2 N
|
OK |
| 60 °C | -4.4% |
17.36 kg / 38.27 lbs
17361.0 g / 170.3 N
|
|
| 80 °C | -6.6% |
16.96 kg / 37.39 lbs
16961.4 g / 166.4 N
|
|
| 100 °C | -28.8% |
12.93 kg / 28.51 lbs
12929.9 g / 126.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 60x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
36.69 kg / 80.89 lbs
4 464 Gs
|
5.50 kg / 12.13 lbs
5503 g / 54.0 N
|
N/A |
| 1 mm |
32.13 kg / 70.84 lbs
5 895 Gs
|
4.82 kg / 10.63 lbs
4820 g / 47.3 N
|
28.92 kg / 63.76 lbs
~0 Gs
|
| 2 mm |
27.59 kg / 60.83 lbs
5 463 Gs
|
4.14 kg / 9.13 lbs
4139 g / 40.6 N
|
24.83 kg / 54.75 lbs
~0 Gs
|
| 3 mm |
23.37 kg / 51.53 lbs
5 027 Gs
|
3.51 kg / 7.73 lbs
3506 g / 34.4 N
|
21.03 kg / 46.37 lbs
~0 Gs
|
| 5 mm |
16.31 kg / 35.97 lbs
4 200 Gs
|
2.45 kg / 5.39 lbs
2447 g / 24.0 N
|
14.68 kg / 32.37 lbs
~0 Gs
|
| 10 mm |
6.42 kg / 14.15 lbs
2 635 Gs
|
0.96 kg / 2.12 lbs
963 g / 9.4 N
|
5.78 kg / 12.74 lbs
~0 Gs
|
| 20 mm |
1.32 kg / 2.91 lbs
1 195 Gs
|
0.20 kg / 0.44 lbs
198 g / 1.9 N
|
1.19 kg / 2.62 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
274 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.08 lbs
192 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
140 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
104 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
80 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 60x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 60x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.29 km/h
(8.14 m/s)
|
0.74 J | |
| 30 mm |
49.65 km/h
(13.79 m/s)
|
2.14 J | |
| 50 mm |
64.07 km/h
(17.80 m/s)
|
3.56 J | |
| 100 mm |
90.60 km/h
(25.17 m/s)
|
7.13 J |
Tabela 9: Odporność na korozję
MPL 60x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 60x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 60x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 18.16 kg | Standard |
| Woda (dno rzeki) |
20.79 kg
(+2.63 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Ostrzeżenie dla sercowców
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zagrożenie dla najmłodszych
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Kompas i GPS
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Alergia na nikiel
Pewna grupa użytkowników posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może skutkować wysypkę. Wskazane jest noszenie rękawic bezlateksowych.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Moc przyciągania
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
