MPL 60x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020474
GTIN: 5906301811947
Długość
60 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
18.16 kg / 178.10 N
Indukcja magnetyczna
315.09 mT / 3151 Gs
Powłoka
[NiCuNi] nikiel
19.00 ZŁ z VAT / szt. + cena za transport
15.45 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie napisz poprzez
formularz kontaktowy
w sekcji kontakt.
Parametry i wygląd magnesów przetestujesz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 60x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 60x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020474 |
| GTIN | 5906301811947 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 18.16 kg / 178.10 N |
| Indukcja magnetyczna ~ ? | 315.09 mT / 3151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu - raport
Poniższe wartości stanowią rezultat kalkulacji fizycznej. Wyniki bazują na modelach dla klasy NdFeB. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MPL 60x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3149 Gs
314.9 mT
|
18.16 kg / 18160.0 g
178.1 N
|
niebezpieczny! |
| 1 mm |
2731 Gs
273.1 mT
|
13.66 kg / 13658.3 g
134.0 N
|
niebezpieczny! |
| 2 mm |
2302 Gs
230.2 mT
|
9.70 kg / 9698.4 g
95.1 N
|
średnie ryzyko |
| 3 mm |
1912 Gs
191.2 mT
|
6.70 kg / 6696.5 g
65.7 N
|
średnie ryzyko |
| 5 mm |
1317 Gs
131.7 mT
|
3.18 kg / 3176.9 g
31.2 N
|
średnie ryzyko |
| 10 mm |
598 Gs
59.8 mT
|
0.65 kg / 653.8 g
6.4 N
|
słaby uchwyt |
| 15 mm |
330 Gs
33.0 mT
|
0.20 kg / 199.2 g
2.0 N
|
słaby uchwyt |
| 20 mm |
205 Gs
20.5 mT
|
0.08 kg / 77.0 g
0.8 N
|
słaby uchwyt |
| 30 mm |
96 Gs
9.6 mT
|
0.02 kg / 16.9 g
0.2 N
|
słaby uchwyt |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 1.8 g
0.0 N
|
słaby uchwyt |
MPL 60x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.63 kg / 3632.0 g
35.6 N
|
| 1 mm | Stal (~0.2) |
2.73 kg / 2732.0 g
26.8 N
|
| 2 mm | Stal (~0.2) |
1.94 kg / 1940.0 g
19.0 N
|
| 3 mm | Stal (~0.2) |
1.34 kg / 1340.0 g
13.1 N
|
| 5 mm | Stal (~0.2) |
0.64 kg / 636.0 g
6.2 N
|
| 10 mm | Stal (~0.2) |
0.13 kg / 130.0 g
1.3 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 60x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.45 kg / 5448.0 g
53.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.63 kg / 3632.0 g
35.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.82 kg / 1816.0 g
17.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.08 kg / 9080.0 g
89.1 N
|
MPL 60x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.91 kg / 908.0 g
8.9 N
|
| 1 mm |
|
2.27 kg / 2270.0 g
22.3 N
|
| 2 mm |
|
4.54 kg / 4540.0 g
44.5 N
|
| 5 mm |
|
11.35 kg / 11350.0 g
111.3 N
|
| 10 mm |
|
18.16 kg / 18160.0 g
178.1 N
|
MPL 60x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.16 kg / 18160.0 g
178.1 N
|
OK |
| 40 °C | -2.2% |
17.76 kg / 17760.5 g
174.2 N
|
OK |
| 60 °C | -4.4% |
17.36 kg / 17361.0 g
170.3 N
|
|
| 80 °C | -6.6% |
16.96 kg / 16961.4 g
166.4 N
|
|
| 100 °C | -28.8% |
12.93 kg / 12929.9 g
126.8 N
|
MPL 60x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
36.69 kg / 36689 g
359.9 N
4 464 Gs
|
N/A |
| 1 mm |
32.13 kg / 32134 g
315.2 N
5 895 Gs
|
28.92 kg / 28921 g
283.7 N
~0 Gs
|
| 2 mm |
27.59 kg / 27594 g
270.7 N
5 463 Gs
|
24.83 kg / 24835 g
243.6 N
~0 Gs
|
| 3 mm |
23.37 kg / 23372 g
229.3 N
5 027 Gs
|
21.03 kg / 21035 g
206.4 N
~0 Gs
|
| 5 mm |
16.31 kg / 16314 g
160.0 N
4 200 Gs
|
14.68 kg / 14682 g
144.0 N
~0 Gs
|
| 10 mm |
6.42 kg / 6418 g
63.0 N
2 635 Gs
|
5.78 kg / 5777 g
56.7 N
~0 Gs
|
| 20 mm |
1.32 kg / 1321 g
13.0 N
1 195 Gs
|
1.19 kg / 1189 g
11.7 N
~0 Gs
|
| 50 mm |
0.07 kg / 69 g
0.7 N
274 Gs
|
0.06 kg / 63 g
0.6 N
~0 Gs
|
MPL 60x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 60x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.29 km/h
(8.14 m/s)
|
0.74 J | |
| 30 mm |
49.65 km/h
(13.79 m/s)
|
2.14 J | |
| 50 mm |
64.07 km/h
(17.80 m/s)
|
3.56 J | |
| 100 mm |
90.60 km/h
(25.17 m/s)
|
7.13 J |
MPL 60x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 60x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
MPL 60x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 18.16 kg | Standard |
| Woda (dno rzeki) |
20.79 kg
(+2.63 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne propozycje
UMP 75x25 [M10x3] GW F200 GOLD DUAL Lina / N42 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady neodymowych magnesów NdFeB.
Należy pamiętać, iż obok wysokiej mocy, produkty te cechują się następującymi plusami:
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
Siła trzymania 18.16 kg jest rezultatem pomiaru zrealizowanego w warunkach wzorcowych:
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
Trzeba mieć na uwadze, że udźwig roboczy będzie inne pod wpływem następujących czynników, zaczynając od najistotniejszych:
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Zalety oraz wady neodymowych magnesów NdFeB.
Należy pamiętać, iż obok wysokiej mocy, produkty te cechują się następującymi plusami:
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
Siła trzymania 18.16 kg jest rezultatem pomiaru zrealizowanego w warunkach wzorcowych:
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
Trzeba mieć na uwadze, że udźwig roboczy będzie inne pod wpływem następujących czynników, zaczynając od najistotniejszych:
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie dla elektroniki
Ekstremalne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Bezpieczna praca
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Pył jest łatwopalny
Pył powstający podczas szlifowania magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Implanty kardiologiczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Zagrożenie dla najmłodszych
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Temperatura pracy
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie fizyczne
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Unikaj kontaktu w przypadku alergii
Część populacji posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać zaczerwienienie skóry. Wskazane jest używanie rękawic bezlateksowych.
Smartfony i tablety
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Bezpieczeństwo!
Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
