MPL 60x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020474
GTIN/EAN: 5906301811947
Długość
60 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
18.16 kg / 178.10 N
Indukcja magnetyczna
315.09 mT / 3151 Gs
Powłoka
[NiCuNi] nikiel
19.00 ZŁ z VAT / szt. + cena za transport
15.45 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub napisz korzystając z
formularz
na stronie kontakt.
Parametry a także formę elementów magnetycznych skontrolujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MPL 60x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 60x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020474 |
| GTIN/EAN | 5906301811947 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 18.16 kg / 178.10 N |
| Indukcja magnetyczna ~ ? | 315.09 mT / 3151 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Niniejsze dane stanowią rezultat symulacji fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 60x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3149 Gs
314.9 mT
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
niebezpieczny! |
| 1 mm |
2731 Gs
273.1 mT
|
13.66 kg / 30.11 lbs
13658.3 g / 134.0 N
|
niebezpieczny! |
| 2 mm |
2302 Gs
230.2 mT
|
9.70 kg / 21.38 lbs
9698.4 g / 95.1 N
|
mocny |
| 3 mm |
1912 Gs
191.2 mT
|
6.70 kg / 14.76 lbs
6696.5 g / 65.7 N
|
mocny |
| 5 mm |
1317 Gs
131.7 mT
|
3.18 kg / 7.00 lbs
3176.9 g / 31.2 N
|
mocny |
| 10 mm |
598 Gs
59.8 mT
|
0.65 kg / 1.44 lbs
653.8 g / 6.4 N
|
bezpieczny |
| 15 mm |
330 Gs
33.0 mT
|
0.20 kg / 0.44 lbs
199.2 g / 2.0 N
|
bezpieczny |
| 20 mm |
205 Gs
20.5 mT
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
bezpieczny |
| 30 mm |
96 Gs
9.6 mT
|
0.02 kg / 0.04 lbs
16.9 g / 0.2 N
|
bezpieczny |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 60x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.63 kg / 8.01 lbs
3632.0 g / 35.6 N
|
| 1 mm | Stal (~0.2) |
2.73 kg / 6.02 lbs
2732.0 g / 26.8 N
|
| 2 mm | Stal (~0.2) |
1.94 kg / 4.28 lbs
1940.0 g / 19.0 N
|
| 3 mm | Stal (~0.2) |
1.34 kg / 2.95 lbs
1340.0 g / 13.1 N
|
| 5 mm | Stal (~0.2) |
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 60x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.45 kg / 12.01 lbs
5448.0 g / 53.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.63 kg / 8.01 lbs
3632.0 g / 35.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.82 kg / 4.00 lbs
1816.0 g / 17.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.08 kg / 20.02 lbs
9080.0 g / 89.1 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 60x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 1 mm |
|
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| 2 mm |
|
4.54 kg / 10.01 lbs
4540.0 g / 44.5 N
|
| 3 mm |
|
6.81 kg / 15.01 lbs
6810.0 g / 66.8 N
|
| 5 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 10 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
| 11 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
| 12 mm |
|
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 60x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
18.16 kg / 40.04 lbs
18160.0 g / 178.1 N
|
OK |
| 40 °C | -2.2% |
17.76 kg / 39.16 lbs
17760.5 g / 174.2 N
|
OK |
| 60 °C | -4.4% |
17.36 kg / 38.27 lbs
17361.0 g / 170.3 N
|
|
| 80 °C | -6.6% |
16.96 kg / 37.39 lbs
16961.4 g / 166.4 N
|
|
| 100 °C | -28.8% |
12.93 kg / 28.51 lbs
12929.9 g / 126.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 60x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
36.69 kg / 80.89 lbs
4 464 Gs
|
5.50 kg / 12.13 lbs
5503 g / 54.0 N
|
N/A |
| 1 mm |
32.13 kg / 70.84 lbs
5 895 Gs
|
4.82 kg / 10.63 lbs
4820 g / 47.3 N
|
28.92 kg / 63.76 lbs
~0 Gs
|
| 2 mm |
27.59 kg / 60.83 lbs
5 463 Gs
|
4.14 kg / 9.13 lbs
4139 g / 40.6 N
|
24.83 kg / 54.75 lbs
~0 Gs
|
| 3 mm |
23.37 kg / 51.53 lbs
5 027 Gs
|
3.51 kg / 7.73 lbs
3506 g / 34.4 N
|
21.03 kg / 46.37 lbs
~0 Gs
|
| 5 mm |
16.31 kg / 35.97 lbs
4 200 Gs
|
2.45 kg / 5.39 lbs
2447 g / 24.0 N
|
14.68 kg / 32.37 lbs
~0 Gs
|
| 10 mm |
6.42 kg / 14.15 lbs
2 635 Gs
|
0.96 kg / 2.12 lbs
963 g / 9.4 N
|
5.78 kg / 12.74 lbs
~0 Gs
|
| 20 mm |
1.32 kg / 2.91 lbs
1 195 Gs
|
0.20 kg / 0.44 lbs
198 g / 1.9 N
|
1.19 kg / 2.62 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
274 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.08 lbs
192 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
140 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
104 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
80 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 60x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 60x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.29 km/h
(8.14 m/s)
|
0.74 J | |
| 30 mm |
49.65 km/h
(13.79 m/s)
|
2.14 J | |
| 50 mm |
64.07 km/h
(17.80 m/s)
|
3.56 J | |
| 100 mm |
90.60 km/h
(25.17 m/s)
|
7.13 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 60x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 60x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 60x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 18.16 kg | Standard |
| Woda (dno rzeki) |
20.79 kg
(+2.63 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują estetyczny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- z płaszczyzną idealnie równą
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Świadome użytkowanie
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Obróbka mechaniczna
Pył generowany podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Nie dawać dzieciom
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Zagrożenie fizyczne
Duże magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.
Niszczenie danych
Nie przykładaj magnesów do portfela, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Alergia na nikiel
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
