MPL 50x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020165
GTIN/EAN: 5906301811718
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
75 g
Kierunek magnesowania
↑ osiowy
Udźwig
29.99 kg / 294.15 N
Indukcja magnetyczna
337.18 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
43.05 ZŁ z VAT / szt. + cena za transport
35.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub napisz przez
formularz kontaktowy
w sekcji kontakt.
Właściwości i wygląd elementów magnetycznych przetestujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 50x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020165 |
| GTIN/EAN | 5906301811718 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 29.99 kg / 294.15 N |
| Indukcja magnetyczna ~ ? | 337.18 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione wartości są rezultat kalkulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 50x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3371 Gs
337.1 mT
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
miażdżący |
| 1 mm |
3158 Gs
315.8 mT
|
26.32 kg / 58.03 lbs
26323.3 g / 258.2 N
|
miażdżący |
| 2 mm |
2932 Gs
293.2 mT
|
22.69 kg / 50.02 lbs
22687.6 g / 222.6 N
|
miażdżący |
| 3 mm |
2703 Gs
270.3 mT
|
19.29 kg / 42.52 lbs
19286.7 g / 189.2 N
|
miażdżący |
| 5 mm |
2266 Gs
226.6 mT
|
13.55 kg / 29.86 lbs
13546.3 g / 132.9 N
|
miażdżący |
| 10 mm |
1419 Gs
141.9 mT
|
5.31 kg / 11.71 lbs
5313.0 g / 52.1 N
|
średnie ryzyko |
| 15 mm |
908 Gs
90.8 mT
|
2.17 kg / 4.79 lbs
2174.5 g / 21.3 N
|
średnie ryzyko |
| 20 mm |
603 Gs
60.3 mT
|
0.96 kg / 2.12 lbs
961.0 g / 9.4 N
|
słaby uchwyt |
| 30 mm |
296 Gs
29.6 mT
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
słaby uchwyt |
| 50 mm |
97 Gs
9.7 mT
|
0.02 kg / 0.05 lbs
24.8 g / 0.2 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 50x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
|
| 1 mm | Stal (~0.2) |
5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
|
| 2 mm | Stal (~0.2) |
4.54 kg / 10.00 lbs
4538.0 g / 44.5 N
|
| 3 mm | Stal (~0.2) |
3.86 kg / 8.51 lbs
3858.0 g / 37.8 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
|
| 15 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 50x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.00 kg / 19.83 lbs
8997.0 g / 88.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.00 kg / 6.61 lbs
2999.0 g / 29.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
15.00 kg / 33.06 lbs
14995.0 g / 147.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 50x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.50 kg / 3.31 lbs
1499.5 g / 14.7 N
|
| 1 mm |
|
3.75 kg / 8.26 lbs
3748.8 g / 36.8 N
|
| 2 mm |
|
7.50 kg / 16.53 lbs
7497.5 g / 73.6 N
|
| 3 mm |
|
11.25 kg / 24.79 lbs
11246.3 g / 110.3 N
|
| 5 mm |
|
18.74 kg / 41.32 lbs
18743.8 g / 183.9 N
|
| 10 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
| 11 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
| 12 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 50x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
OK |
| 40 °C | -2.2% |
29.33 kg / 64.66 lbs
29330.2 g / 287.7 N
|
OK |
| 60 °C | -4.4% |
28.67 kg / 63.21 lbs
28670.4 g / 281.3 N
|
|
| 80 °C | -6.6% |
28.01 kg / 61.75 lbs
28010.7 g / 274.8 N
|
|
| 100 °C | -28.8% |
21.35 kg / 47.07 lbs
21352.9 g / 209.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 50x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
70.06 kg / 154.45 lbs
4 789 Gs
|
10.51 kg / 23.17 lbs
10509 g / 103.1 N
|
N/A |
| 1 mm |
65.83 kg / 145.13 lbs
6 535 Gs
|
9.87 kg / 21.77 lbs
9874 g / 96.9 N
|
59.25 kg / 130.61 lbs
~0 Gs
|
| 2 mm |
61.49 kg / 135.57 lbs
6 316 Gs
|
9.22 kg / 20.34 lbs
9224 g / 90.5 N
|
55.34 kg / 122.01 lbs
~0 Gs
|
| 3 mm |
57.20 kg / 126.10 lbs
6 092 Gs
|
8.58 kg / 18.92 lbs
8580 g / 84.2 N
|
51.48 kg / 113.49 lbs
~0 Gs
|
| 5 mm |
48.94 kg / 107.89 lbs
5 635 Gs
|
7.34 kg / 16.18 lbs
7341 g / 72.0 N
|
44.05 kg / 97.10 lbs
~0 Gs
|
| 10 mm |
31.64 kg / 69.76 lbs
4 531 Gs
|
4.75 kg / 10.46 lbs
4747 g / 46.6 N
|
28.48 kg / 62.79 lbs
~0 Gs
|
| 20 mm |
12.41 kg / 27.36 lbs
2 838 Gs
|
1.86 kg / 4.10 lbs
1862 g / 18.3 N
|
11.17 kg / 24.63 lbs
~0 Gs
|
| 50 mm |
1.07 kg / 2.35 lbs
832 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 60 mm |
0.54 kg / 1.19 lbs
592 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.07 lbs
~0 Gs
|
| 70 mm |
0.29 kg / 0.64 lbs
433 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 80 mm |
0.16 kg / 0.36 lbs
324 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 90 mm |
0.10 kg / 0.21 lbs
248 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 100 mm |
0.06 kg / 0.13 lbs
194 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 50x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 50x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.29 km/h
(6.19 m/s)
|
1.44 J | |
| 30 mm |
35.10 km/h
(9.75 m/s)
|
3.56 J | |
| 50 mm |
45.12 km/h
(12.53 m/s)
|
5.89 J | |
| 100 mm |
63.77 km/h
(17.72 m/s)
|
11.77 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 50x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 50x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 32 980 Mx | 329.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 50x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 29.99 kg | Standard |
| Woda (dno rzeki) |
34.34 kg
(+4.35 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
BHP przy magnesach
Ryzyko uczulenia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Kompas i GPS
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
To nie jest zabawka
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
