MPL 40x40x15 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020161
GTIN/EAN: 5906301811671
Długość
40 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
180 g
Kierunek magnesowania
↑ osiowy
Udźwig
46.94 kg / 460.51 N
Indukcja magnetyczna
345.80 mT / 3458 Gs
Powłoka
[NiCuNi] nikiel
55.37 ZŁ z VAT / szt. + cena za transport
45.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie zostaw wiadomość za pomocą
formularz
w sekcji kontakt.
Udźwig i wygląd elementów magnetycznych obliczysz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MPL 40x40x15 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x40x15 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020161 |
| GTIN/EAN | 5906301811671 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 180 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 46.94 kg / 460.51 N |
| Indukcja magnetyczna ~ ? | 345.80 mT / 3458 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe dane są rezultat analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 40x40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3458 Gs
345.8 mT
|
46.94 kg / 46940.0 g
460.5 N
|
miażdżący |
| 1 mm |
3333 Gs
333.3 mT
|
43.62 kg / 43616.1 g
427.9 N
|
miażdżący |
| 2 mm |
3199 Gs
319.9 mT
|
40.19 kg / 40189.1 g
394.3 N
|
miażdżący |
| 3 mm |
3060 Gs
306.0 mT
|
36.77 kg / 36767.3 g
360.7 N
|
miażdżący |
| 5 mm |
2773 Gs
277.3 mT
|
30.19 kg / 30187.9 g
296.1 N
|
miażdżący |
| 10 mm |
2078 Gs
207.8 mT
|
16.95 kg / 16950.2 g
166.3 N
|
miażdżący |
| 15 mm |
1507 Gs
150.7 mT
|
8.91 kg / 8913.7 g
87.4 N
|
uwaga |
| 20 mm |
1085 Gs
108.5 mT
|
4.62 kg / 4622.3 g
45.3 N
|
uwaga |
| 30 mm |
580 Gs
58.0 mT
|
1.32 kg / 1322.9 g
13.0 N
|
bezpieczny |
| 50 mm |
204 Gs
20.4 mT
|
0.16 kg / 164.0 g
1.6 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 40x40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.39 kg / 9388.0 g
92.1 N
|
| 1 mm | Stal (~0.2) |
8.72 kg / 8724.0 g
85.6 N
|
| 2 mm | Stal (~0.2) |
8.04 kg / 8038.0 g
78.9 N
|
| 3 mm | Stal (~0.2) |
7.35 kg / 7354.0 g
72.1 N
|
| 5 mm | Stal (~0.2) |
6.04 kg / 6038.0 g
59.2 N
|
| 10 mm | Stal (~0.2) |
3.39 kg / 3390.0 g
33.3 N
|
| 15 mm | Stal (~0.2) |
1.78 kg / 1782.0 g
17.5 N
|
| 20 mm | Stal (~0.2) |
0.92 kg / 924.0 g
9.1 N
|
| 30 mm | Stal (~0.2) |
0.26 kg / 264.0 g
2.6 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.08 kg / 14082.0 g
138.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.39 kg / 9388.0 g
92.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.69 kg / 4694.0 g
46.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
23.47 kg / 23470.0 g
230.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.35 kg / 2347.0 g
23.0 N
|
| 1 mm |
|
5.87 kg / 5867.5 g
57.6 N
|
| 2 mm |
|
11.74 kg / 11735.0 g
115.1 N
|
| 5 mm |
|
29.34 kg / 29337.5 g
287.8 N
|
| 10 mm |
|
46.94 kg / 46940.0 g
460.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 40x40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
46.94 kg / 46940.0 g
460.5 N
|
OK |
| 40 °C | -2.2% |
45.91 kg / 45907.3 g
450.4 N
|
OK |
| 60 °C | -4.4% |
44.87 kg / 44874.6 g
440.2 N
|
|
| 80 °C | -6.6% |
43.84 kg / 43842.0 g
430.1 N
|
|
| 100 °C | -28.8% |
33.42 kg / 33421.3 g
327.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 40x40x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
117.92 kg / 117923 g
1156.8 N
4 963 Gs
|
N/A |
| 1 mm |
113.82 kg / 113824 g
1116.6 N
6 794 Gs
|
102.44 kg / 102441 g
1004.9 N
~0 Gs
|
| 2 mm |
109.57 kg / 109572 g
1074.9 N
6 666 Gs
|
98.62 kg / 98615 g
967.4 N
~0 Gs
|
| 3 mm |
105.28 kg / 105277 g
1032.8 N
6 534 Gs
|
94.75 kg / 94750 g
929.5 N
~0 Gs
|
| 5 mm |
96.65 kg / 96652 g
948.2 N
6 261 Gs
|
86.99 kg / 86987 g
853.3 N
~0 Gs
|
| 10 mm |
75.84 kg / 75838 g
744.0 N
5 546 Gs
|
68.25 kg / 68254 g
669.6 N
~0 Gs
|
| 20 mm |
42.58 kg / 42582 g
417.7 N
4 155 Gs
|
38.32 kg / 38324 g
376.0 N
~0 Gs
|
| 50 mm |
6.12 kg / 6119 g
60.0 N
1 575 Gs
|
5.51 kg / 5507 g
54.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 40x40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 12.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 10.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 40x40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.62 km/h
(5.45 m/s)
|
2.67 J | |
| 30 mm |
28.70 km/h
(7.97 m/s)
|
5.72 J | |
| 50 mm |
36.50 km/h
(10.14 m/s)
|
9.25 J | |
| 100 mm |
51.50 km/h
(14.31 m/s)
|
18.42 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 58 107 Mx | 581.1 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 46.94 kg | Standard |
| Woda (dno rzeki) |
53.75 kg
(+6.81 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach z neodymem
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Ryzyko uczulenia
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Obróbka mechaniczna
Proszek generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko zmiażdżenia
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Wpływ na smartfony
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Potężne pole
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
