MPL 40x40x15 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020161
GTIN/EAN: 5906301811671
Długość
40 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
180 g
Kierunek magnesowania
↑ osiowy
Udźwig
46.94 kg / 460.51 N
Indukcja magnetyczna
345.80 mT / 3458 Gs
Powłoka
[NiCuNi] nikiel
55.37 ZŁ z VAT / szt. + cena za transport
45.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie pisz poprzez
formularz zgłoszeniowy
na stronie kontakt.
Udźwig a także budowę magnesów neodymowych testujesz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 40x40x15 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 40x40x15 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020161 |
| GTIN/EAN | 5906301811671 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 180 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 46.94 kg / 460.51 N |
| Indukcja magnetyczna ~ ? | 345.80 mT / 3458 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu neodymowego - raport
Niniejsze informacje są wynik kalkulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
MPL 40x40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3458 Gs
345.8 mT
|
46.94 kg / 46940.0 g
460.5 N
|
miażdżący |
| 1 mm |
3333 Gs
333.3 mT
|
43.62 kg / 43616.1 g
427.9 N
|
miażdżący |
| 2 mm |
3199 Gs
319.9 mT
|
40.19 kg / 40189.1 g
394.3 N
|
miażdżący |
| 3 mm |
3060 Gs
306.0 mT
|
36.77 kg / 36767.3 g
360.7 N
|
miażdżący |
| 5 mm |
2773 Gs
277.3 mT
|
30.19 kg / 30187.9 g
296.1 N
|
miażdżący |
| 10 mm |
2078 Gs
207.8 mT
|
16.95 kg / 16950.2 g
166.3 N
|
miażdżący |
| 15 mm |
1507 Gs
150.7 mT
|
8.91 kg / 8913.7 g
87.4 N
|
średnie ryzyko |
| 20 mm |
1085 Gs
108.5 mT
|
4.62 kg / 4622.3 g
45.3 N
|
średnie ryzyko |
| 30 mm |
580 Gs
58.0 mT
|
1.32 kg / 1322.9 g
13.0 N
|
bezpieczny |
| 50 mm |
204 Gs
20.4 mT
|
0.16 kg / 164.0 g
1.6 N
|
bezpieczny |
MPL 40x40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.39 kg / 9388.0 g
92.1 N
|
| 1 mm | Stal (~0.2) |
8.72 kg / 8724.0 g
85.6 N
|
| 2 mm | Stal (~0.2) |
8.04 kg / 8038.0 g
78.9 N
|
| 3 mm | Stal (~0.2) |
7.35 kg / 7354.0 g
72.1 N
|
| 5 mm | Stal (~0.2) |
6.04 kg / 6038.0 g
59.2 N
|
| 10 mm | Stal (~0.2) |
3.39 kg / 3390.0 g
33.3 N
|
| 15 mm | Stal (~0.2) |
1.78 kg / 1782.0 g
17.5 N
|
| 20 mm | Stal (~0.2) |
0.92 kg / 924.0 g
9.1 N
|
| 30 mm | Stal (~0.2) |
0.26 kg / 264.0 g
2.6 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
MPL 40x40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.08 kg / 14082.0 g
138.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.39 kg / 9388.0 g
92.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.69 kg / 4694.0 g
46.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
23.47 kg / 23470.0 g
230.2 N
|
MPL 40x40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.35 kg / 2347.0 g
23.0 N
|
| 1 mm |
|
5.87 kg / 5867.5 g
57.6 N
|
| 2 mm |
|
11.74 kg / 11735.0 g
115.1 N
|
| 5 mm |
|
29.34 kg / 29337.5 g
287.8 N
|
| 10 mm |
|
46.94 kg / 46940.0 g
460.5 N
|
MPL 40x40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
46.94 kg / 46940.0 g
460.5 N
|
OK |
| 40 °C | -2.2% |
45.91 kg / 45907.3 g
450.4 N
|
OK |
| 60 °C | -4.4% |
44.87 kg / 44874.6 g
440.2 N
|
|
| 80 °C | -6.6% |
43.84 kg / 43842.0 g
430.1 N
|
|
| 100 °C | -28.8% |
33.42 kg / 33421.3 g
327.9 N
|
MPL 40x40x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
117.92 kg / 117923 g
1156.8 N
4 963 Gs
|
N/A |
| 1 mm |
113.82 kg / 113824 g
1116.6 N
6 794 Gs
|
102.44 kg / 102441 g
1004.9 N
~0 Gs
|
| 2 mm |
109.57 kg / 109572 g
1074.9 N
6 666 Gs
|
98.62 kg / 98615 g
967.4 N
~0 Gs
|
| 3 mm |
105.28 kg / 105277 g
1032.8 N
6 534 Gs
|
94.75 kg / 94750 g
929.5 N
~0 Gs
|
| 5 mm |
96.65 kg / 96652 g
948.2 N
6 261 Gs
|
86.99 kg / 86987 g
853.3 N
~0 Gs
|
| 10 mm |
75.84 kg / 75838 g
744.0 N
5 546 Gs
|
68.25 kg / 68254 g
669.6 N
~0 Gs
|
| 20 mm |
42.58 kg / 42582 g
417.7 N
4 155 Gs
|
38.32 kg / 38324 g
376.0 N
~0 Gs
|
| 50 mm |
6.12 kg / 6119 g
60.0 N
1 575 Gs
|
5.51 kg / 5507 g
54.0 N
~0 Gs
|
MPL 40x40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 10.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
MPL 40x40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.62 km/h
(5.45 m/s)
|
2.67 J | |
| 30 mm |
28.70 km/h
(7.97 m/s)
|
5.72 J | |
| 50 mm |
36.50 km/h
(10.14 m/s)
|
9.25 J | |
| 100 mm |
51.50 km/h
(14.31 m/s)
|
18.42 J |
MPL 40x40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 40x40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 58 107 Mx | 581.1 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
MPL 40x40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 46.94 kg | Standard |
| Woda (dno rzeki) |
53.75 kg
(+6.81 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Poważne obrażenia
Duże magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Nie dawać dzieciom
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Karty i dyski
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
