Magnesy neodymowe – najsilniejsze na rynku

Potrzebujesz niezawodnego pola magnetycznego? Posiadamy w sprzedaży szeroki wybór magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do zastosowań domowych, warsztatu oraz modelarstwa. Sprawdź naszą ofertę w naszym magazynie.

zobacz katalog magnesów

Uchwyty do poszukiwań wodnych

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do montażu bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na halach produkcyjnych. Są niezastąpione przy mocowaniu oświetlenia, czujników oraz reklam.

zobacz dostępne gwinty

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020159

GTIN/EAN: 5906301811657

5.00

Długość

40 mm [±0,1 mm]

Szerokość

20 mm [±0,1 mm]

Wysokość

4 mm [±0,1 mm]

Waga

24 g

Kierunek magnesowania

↑ osiowy

Udźwig

7.52 kg / 73.80 N

Indukcja magnetyczna

168.28 mT / 1683 Gs

Powłoka

[NiCuNi] nikiel

17.96 z VAT / szt. + cena za transport

14.60 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
14.60 ZŁ
17.96 ZŁ
cena od 50 szt.
13.72 ZŁ
16.88 ZŁ
cena od 180 szt.
12.85 ZŁ
15.80 ZŁ
Szukasz zniżki?

Zadzwoń i zapytaj +48 22 499 98 98 albo pisz za pomocą formularz na stronie kontakt.
Parametry a także kształt elementów magnetycznych sprawdzisz dzięki naszemu kalkulatorze mocy.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Specyfikacja MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020159
GTIN/EAN 5906301811657
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 40 mm [±0,1 mm]
Szerokość 20 mm [±0,1 mm]
Wysokość 4 mm [±0,1 mm]
Waga 24 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 7.52 kg / 73.80 N
Indukcja magnetyczna ~ ? 168.28 mT / 1683 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza techniczna magnesu - raport

Przedstawione wartości są rezultat analizy inżynierskiej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 40x20x4x2[7/3.5] / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 1683 Gs
168.3 mT
7.52 kg / 7520.0 g
73.8 N
średnie ryzyko
1 mm 1613 Gs
161.3 mT
6.91 kg / 6913.8 g
67.8 N
średnie ryzyko
2 mm 1524 Gs
152.4 mT
6.17 kg / 6172.9 g
60.6 N
średnie ryzyko
3 mm 1423 Gs
142.3 mT
5.38 kg / 5379.4 g
52.8 N
średnie ryzyko
5 mm 1207 Gs
120.7 mT
3.87 kg / 3869.8 g
38.0 N
średnie ryzyko
10 mm 744 Gs
74.4 mT
1.47 kg / 1469.3 g
14.4 N
bezpieczny
15 mm 455 Gs
45.5 mT
0.55 kg / 550.7 g
5.4 N
bezpieczny
20 mm 288 Gs
28.8 mT
0.22 kg / 220.3 g
2.2 N
bezpieczny
30 mm 129 Gs
12.9 mT
0.04 kg / 44.4 g
0.4 N
bezpieczny
50 mm 38 Gs
3.8 mT
0.00 kg / 3.8 g
0.0 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (pion)
MPL 40x20x4x2[7/3.5] / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 1.50 kg / 1504.0 g
14.8 N
1 mm Stal (~0.2) 1.38 kg / 1382.0 g
13.6 N
2 mm Stal (~0.2) 1.23 kg / 1234.0 g
12.1 N
3 mm Stal (~0.2) 1.08 kg / 1076.0 g
10.6 N
5 mm Stal (~0.2) 0.77 kg / 774.0 g
7.6 N
10 mm Stal (~0.2) 0.29 kg / 294.0 g
2.9 N
15 mm Stal (~0.2) 0.11 kg / 110.0 g
1.1 N
20 mm Stal (~0.2) 0.04 kg / 44.0 g
0.4 N
30 mm Stal (~0.2) 0.01 kg / 8.0 g
0.1 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 40x20x4x2[7/3.5] / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
2.26 kg / 2256.0 g
22.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
1.50 kg / 1504.0 g
14.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.75 kg / 752.0 g
7.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
3.76 kg / 3760.0 g
36.9 N

Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 40x20x4x2[7/3.5] / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.75 kg / 752.0 g
7.4 N
1 mm
25%
1.88 kg / 1880.0 g
18.4 N
2 mm
50%
3.76 kg / 3760.0 g
36.9 N
5 mm
100%
7.52 kg / 7520.0 g
73.8 N
10 mm
100%
7.52 kg / 7520.0 g
73.8 N

Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 40x20x4x2[7/3.5] / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 7.52 kg / 7520.0 g
73.8 N
OK
40 °C -2.2% 7.35 kg / 7354.6 g
72.1 N
OK
60 °C -4.4% 7.19 kg / 7189.1 g
70.5 N
80 °C -6.6% 7.02 kg / 7023.7 g
68.9 N
100 °C -28.8% 5.35 kg / 5354.2 g
52.5 N

Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 40x20x4x2[7/3.5] / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 13.96 kg / 13963 g
137.0 N
2 997 Gs
N/A
1 mm 13.44 kg / 13444 g
131.9 N
3 302 Gs
12.10 kg / 12100 g
118.7 N
~0 Gs
2 mm 12.84 kg / 12837 g
125.9 N
3 227 Gs
11.55 kg / 11554 g
113.3 N
~0 Gs
3 mm 12.17 kg / 12170 g
119.4 N
3 142 Gs
10.95 kg / 10953 g
107.5 N
~0 Gs
5 mm 10.73 kg / 10729 g
105.3 N
2 950 Gs
9.66 kg / 9656 g
94.7 N
~0 Gs
10 mm 7.19 kg / 7185 g
70.5 N
2 414 Gs
6.47 kg / 6467 g
63.4 N
~0 Gs
20 mm 2.73 kg / 2728 g
26.8 N
1 487 Gs
2.46 kg / 2455 g
24.1 N
~0 Gs
50 mm 0.18 kg / 177 g
1.7 N
379 Gs
0.16 kg / 159 g
1.6 N
~0 Gs

Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 40x20x4x2[7/3.5] / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 10.5 cm
Implant słuchowy 10 Gs (1.0 mT) 8.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 6.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 5.0 cm
Pilot do auta 50 Gs (5.0 mT) 4.5 cm
Karta płatnicza 400 Gs (40.0 mT) 2.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.5 cm

Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x20x4x2[7/3.5] / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 19.91 km/h
(5.53 m/s)
0.37 J
30 mm 31.03 km/h
(8.62 m/s)
0.89 J
50 mm 39.93 km/h
(11.09 m/s)
1.48 J
100 mm 56.45 km/h
(15.68 m/s)
2.95 J

Tabela 9: Parametry powłoki (trwałość)
MPL 40x20x4x2[7/3.5] / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Flux)
MPL 40x20x4x2[7/3.5] / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 15 299 Mx 153.0 µWb
Współczynnik Pc 0.19 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x20x4x2[7/3.5] / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 7.52 kg Standard
Woda (dno rzeki) 8.61 kg
(+1.09 kg Zysk z wyporności)
+14.5%
Ostrzeżenie: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Ześlizg (ściana)

*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.

2. Grubość podłoża

*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.

3. Wytrzymałość temperaturowa

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020159-2025
Szybki konwerter jednostek
Udźwig magnesu

Pole magnetyczne

Sprawdź inne oferty

Komponent MPL 40x20x4x2[7/3.5] / N38 cechuje się płaskim kształtem oraz przemysłową siłą przyciągania, dzięki czemu jest to rozwiązanie doskonałe do budowy separatorów i maszyn. Ten blok magnetyczny o sile 73.80 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Ponadto, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 40x20x4x2[7/3.5] / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem zmatowić i przemyć powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: 40 mm (długość), 20 mm (szerokość) i 4 mm (grubość). Jest to blok magnetyczny o gabarytach 40x20x4 mm i masie własnej 24 g, gotowy do pracy w temperaturze do 80°C. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Wady oraz zalety magnesów z neodymu Nd2Fe14B.

Plusy

Oprócz niezwykłą mocą, magnesy typu NdFeB posiadają wiele innych atutów::
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
  • Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, błyszczący wygląd.
  • Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.

Słabe strony

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.

Analiza siły trzymania

Maksymalna moc trzymania magnesuco się na to składa?

Parametr siły jest wartością teoretyczną maksymalną zrealizowanego w specyficznych, idealnych warunkach:
  • przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • której wymiar poprzeczny wynosi ok. 10 mm
  • charakteryzującej się równą strukturą
  • w warunkach bezszczelinowych (powierzchnia do powierzchni)
  • dla siły działającej pod kątem prostym (w osi magnesu)
  • przy temperaturze ok. 20 stopni Celsjusza

Kluczowe elementy wpływające na udźwig

W praktyce, rzeczywisty udźwig zależy od wielu zmiennych, wymienionych od kluczowych:
  • Dystans (pomiędzy magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
  • Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
  • Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
  • Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
  • Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
  • Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.

Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.

Zasady BHP dla użytkowników magnesów
Bezpieczny dystans

Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).

Ochrona oczu

Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.

Świadome użytkowanie

Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.

Ryzyko złamań

Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Nigdy wkładaj dłoni między dwa przyciągające się elementy.

Tylko dla dorosłych

Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.

Trwała utrata siły

Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.

Uczulenie na powłokę

Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.

Pył jest łatwopalny

Pył generowany podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.

Niebezpieczeństwo dla rozruszników

Osoby z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.

Zagrożenie dla nawigacji

Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.

Ostrzeżenie! Szczegółowe omówienie o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98