MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020154
GTIN/EAN: 5906301811602
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.35 kg / 111.37 N
Indukcja magnetyczna
249.11 mT / 2491 Gs
Powłoka
[NiCuNi] nikiel
15.07 ZŁ z VAT / szt. + cena za transport
12.25 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie zostaw wiadomość przez
formularz kontaktowy
przez naszą stronę.
Właściwości oraz kształt magnesu neodymowego zobaczysz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020154 |
| GTIN/EAN | 5906301811602 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.35 kg / 111.37 N |
| Indukcja magnetyczna ~ ? | 249.11 mT / 2491 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione dane są bezpośredni efekt kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
miażdżący |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 21.45 lbs
9731.3 g / 95.5 N
|
średnie ryzyko |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 17.70 lbs
8028.8 g / 78.8 N
|
średnie ryzyko |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 14.21 lbs
6445.4 g / 63.2 N
|
średnie ryzyko |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 8.74 lbs
3965.1 g / 38.9 N
|
średnie ryzyko |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 2.53 lbs
1147.1 g / 11.3 N
|
bezpieczny |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 0.83 lbs
376.9 g / 3.7 N
|
bezpieczny |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 0.31 lbs
141.4 g / 1.4 N
|
bezpieczny |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 0.06 lbs
27.0 g / 0.3 N
|
bezpieczny |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.01 lbs
2.3 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 4.29 lbs
1946.0 g / 19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 3.54 lbs
1606.0 g / 15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 2.84 lbs
1290.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 1.75 lbs
794.0 g / 7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 40x15x5x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 7.51 lbs
3405.0 g / 33.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 2.50 lbs
1135.0 g / 11.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 12.51 lbs
5675.0 g / 55.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 40x15x5x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 1.25 lbs
567.5 g / 5.6 N
|
| 1 mm |
|
1.42 kg / 3.13 lbs
1418.8 g / 13.9 N
|
| 2 mm |
|
2.84 kg / 6.26 lbs
2837.5 g / 27.8 N
|
| 3 mm |
|
4.26 kg / 9.38 lbs
4256.3 g / 41.8 N
|
| 5 mm |
|
7.09 kg / 15.64 lbs
7093.8 g / 69.6 N
|
| 10 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 11 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 12 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 40x15x5x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 24.47 lbs
11100.3 g / 108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 23.92 lbs
10850.6 g / 106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 23.37 lbs
10600.9 g / 104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 17.82 lbs
8081.2 g / 79.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 40x15x5x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.94 kg / 50.58 lbs
3 961 Gs
|
3.44 kg / 7.59 lbs
3441 g / 33.8 N
|
N/A |
| 1 mm |
21.37 kg / 47.11 lbs
4 807 Gs
|
3.21 kg / 7.07 lbs
3205 g / 31.4 N
|
19.23 kg / 42.40 lbs
~0 Gs
|
| 2 mm |
19.67 kg / 43.37 lbs
4 612 Gs
|
2.95 kg / 6.50 lbs
2951 g / 28.9 N
|
17.70 kg / 39.03 lbs
~0 Gs
|
| 3 mm |
17.94 kg / 39.55 lbs
4 404 Gs
|
2.69 kg / 5.93 lbs
2691 g / 26.4 N
|
16.15 kg / 35.59 lbs
~0 Gs
|
| 5 mm |
14.58 kg / 32.15 lbs
3 971 Gs
|
2.19 kg / 4.82 lbs
2187 g / 21.5 N
|
13.12 kg / 28.93 lbs
~0 Gs
|
| 10 mm |
8.01 kg / 17.67 lbs
2 944 Gs
|
1.20 kg / 2.65 lbs
1202 g / 11.8 N
|
7.21 kg / 15.90 lbs
~0 Gs
|
| 20 mm |
2.32 kg / 5.11 lbs
1 583 Gs
|
0.35 kg / 0.77 lbs
348 g / 3.4 N
|
2.09 kg / 4.60 lbs
~0 Gs
|
| 50 mm |
0.12 kg / 0.26 lbs
359 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 lbs
243 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
171 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
124 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
92 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
70 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 40x15x5x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x15x5x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x15x5x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x15x5x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x15x5x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.35 kg | Standard |
| Woda (dno rzeki) |
13.00 kg
(+1.65 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze otoczenia pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans (między magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka blacha nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ogromna siła
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Ryzyko pożaru
Pył powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Kompas i GPS
Silne pole magnetyczne destabilizuje działanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Urządzenia elektroniczne
Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła zgniatająca
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Chronić przed dziećmi
Magnesy neodymowe to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
