MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020154
GTIN/EAN: 5906301811602
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.35 kg / 111.37 N
Indukcja magnetyczna
249.11 mT / 2491 Gs
Powłoka
[NiCuNi] nikiel
15.07 ZŁ z VAT / szt. + cena za transport
12.25 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz jaki magnes kupić?
Dzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość korzystając z
formularz
w sekcji kontakt.
Siłę a także formę magnesów neodymowych obliczysz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020154 |
| GTIN/EAN | 5906301811602 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.35 kg / 111.37 N |
| Indukcja magnetyczna ~ ? | 249.11 mT / 2491 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - dane
Niniejsze dane stanowią bezpośredni efekt symulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 11350.0 g
111.3 N
|
krytyczny poziom |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 9731.3 g
95.5 N
|
mocny |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 8028.8 g
78.8 N
|
mocny |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 6445.4 g
63.2 N
|
mocny |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 3965.1 g
38.9 N
|
mocny |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 1147.1 g
11.3 N
|
bezpieczny |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 376.9 g
3.7 N
|
bezpieczny |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 141.4 g
1.4 N
|
bezpieczny |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 27.0 g
0.3 N
|
bezpieczny |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 2.3 g
0.0 N
|
bezpieczny |
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 2270.0 g
22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 1946.0 g
19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 1606.0 g
15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 1290.0 g
12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 794.0 g
7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 76.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 40x15x5x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 3405.0 g
33.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 2270.0 g
22.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 1135.0 g
11.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 5675.0 g
55.7 N
|
MPL 40x15x5x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 567.5 g
5.6 N
|
| 1 mm |
|
1.42 kg / 1418.8 g
13.9 N
|
| 2 mm |
|
2.84 kg / 2837.5 g
27.8 N
|
| 5 mm |
|
7.09 kg / 7093.8 g
69.6 N
|
| 10 mm |
|
11.35 kg / 11350.0 g
111.3 N
|
MPL 40x15x5x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 11350.0 g
111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 11100.3 g
108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 10850.6 g
106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 10600.9 g
104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 8081.2 g
79.3 N
|
MPL 40x15x5x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
22.94 kg / 22943 g
225.1 N
3 961 Gs
|
N/A |
| 1 mm |
21.37 kg / 21370 g
209.6 N
4 807 Gs
|
19.23 kg / 19233 g
188.7 N
~0 Gs
|
| 2 mm |
19.67 kg / 19671 g
193.0 N
4 612 Gs
|
17.70 kg / 17704 g
173.7 N
~0 Gs
|
| 3 mm |
17.94 kg / 17940 g
176.0 N
4 404 Gs
|
16.15 kg / 16146 g
158.4 N
~0 Gs
|
| 5 mm |
14.58 kg / 14582 g
143.1 N
3 971 Gs
|
13.12 kg / 13124 g
128.7 N
~0 Gs
|
| 10 mm |
8.01 kg / 8015 g
78.6 N
2 944 Gs
|
7.21 kg / 7213 g
70.8 N
~0 Gs
|
| 20 mm |
2.32 kg / 2319 g
22.7 N
1 583 Gs
|
2.09 kg / 2087 g
20.5 N
~0 Gs
|
| 50 mm |
0.12 kg / 120 g
1.2 N
359 Gs
|
0.11 kg / 108 g
1.1 N
~0 Gs
|
MPL 40x15x5x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 40x15x5x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
MPL 40x15x5x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 40x15x5x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
MPL 40x15x5x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.35 kg | Standard |
| Woda (dno rzeki) |
13.00 kg
(+1.65 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
UMP 94x28 [3xM10] GW F300 GOLD Lina / N38 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- z użyciem płyty ze stali niskowęglowej, działającej jako zwora magnetyczna
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się na drugą stronę.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Implanty medyczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zakaz obróbki
Pył generowany podczas obróbki magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Moc przyciągania
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Urazy ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
