MPL 3x3x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020148
GTIN/EAN: 5906301811541
Długość
3 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.34 kg / 3.37 N
Indukcja magnetyczna
538.48 mT / 5385 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie pisz za pomocą
nasz formularz online
w sekcji kontakt.
Siłę i wygląd magnesu przetestujesz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 3x3x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 3x3x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020148 |
| GTIN/EAN | 5906301811541 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 3 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.34 kg / 3.37 N |
| Indukcja magnetyczna ~ ? | 538.48 mT / 5385 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione informacje są bezpośredni efekt symulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 3x3x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5372 Gs
537.2 mT
|
0.34 kg / 340.0 g
3.3 N
|
bezpieczny |
| 1 mm |
2530 Gs
253.0 mT
|
0.08 kg / 75.4 g
0.7 N
|
bezpieczny |
| 2 mm |
1127 Gs
112.7 mT
|
0.01 kg / 15.0 g
0.1 N
|
bezpieczny |
| 3 mm |
562 Gs
56.2 mT
|
0.00 kg / 3.7 g
0.0 N
|
bezpieczny |
| 5 mm |
192 Gs
19.2 mT
|
0.00 kg / 0.4 g
0.0 N
|
bezpieczny |
| 10 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 15 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 3x3x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 68.0 g
0.7 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 3x3x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 102.0 g
1.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 68.0 g
0.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 34.0 g
0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.17 kg / 170.0 g
1.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 3x3x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 34.0 g
0.3 N
|
| 1 mm |
|
0.09 kg / 85.0 g
0.8 N
|
| 2 mm |
|
0.17 kg / 170.0 g
1.7 N
|
| 5 mm |
|
0.34 kg / 340.0 g
3.3 N
|
| 10 mm |
|
0.34 kg / 340.0 g
3.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 3x3x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.34 kg / 340.0 g
3.3 N
|
OK |
| 40 °C | -2.2% |
0.33 kg / 332.5 g
3.3 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 325.0 g
3.2 N
|
OK |
| 80 °C | -6.6% |
0.32 kg / 317.6 g
3.1 N
|
|
| 100 °C | -28.8% |
0.24 kg / 242.1 g
2.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 3x3x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.60 kg / 1601 g
15.7 N
5 931 Gs
|
N/A |
| 1 mm |
0.80 kg / 803 g
7.9 N
7 610 Gs
|
0.72 kg / 723 g
7.1 N
~0 Gs
|
| 2 mm |
0.36 kg / 355 g
3.5 N
5 061 Gs
|
0.32 kg / 320 g
3.1 N
~0 Gs
|
| 3 mm |
0.15 kg / 155 g
1.5 N
3 343 Gs
|
0.14 kg / 139 g
1.4 N
~0 Gs
|
| 5 mm |
0.03 kg / 34 g
0.3 N
1 568 Gs
|
0.03 kg / 31 g
0.3 N
~0 Gs
|
| 10 mm |
0.00 kg / 2 g
0.0 N
384 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
70 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
6 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 3x3x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 3x3x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
41.58 km/h
(11.55 m/s)
|
0.01 J | |
| 30 mm |
72.02 km/h
(20.01 m/s)
|
0.04 J | |
| 50 mm |
92.98 km/h
(25.83 m/s)
|
0.07 J | |
| 100 mm |
131.49 km/h
(36.53 m/s)
|
0.13 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 3x3x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 3x3x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 495 Mx | 5.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 3x3x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.34 kg | Standard |
| Woda (dno rzeki) |
0.39 kg
(+0.05 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną oczyszczoną i gładką
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Szczelina – występowanie ciała obcego (rdza, taśma, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
Ostrzeżenia
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Elektronika precyzyjna
Uwaga: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Niszczenie danych
Unikaj zbliżania magnesów do portfela, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Kruchość materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Produkt nie dla dzieci
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Ryzyko zmiażdżenia
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
Nie wierć w magnesach
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Reakcje alergiczne
Pewna grupa użytkowników wykazuje nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może skutkować silną reakcję alergiczną. Zalecamy używanie rękawic bezlateksowych.
