MPL 35x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020145
GTIN/EAN: 5906301811510
Długość
35 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
5.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.21 kg / 60.89 N
Indukcja magnetyczna
285.96 mT / 2860 Gs
Powłoka
[NiCuNi] nikiel
2.99 ZŁ z VAT / szt. + cena za transport
2.43 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
formularz kontaktowy
na naszej stronie.
Udźwig a także kształt elementów magnetycznych zweryfikujesz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MPL 35x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 35x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020145 |
| GTIN/EAN | 5906301811510 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 35 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 5.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.21 kg / 60.89 N |
| Indukcja magnetyczna ~ ? | 285.96 mT / 2860 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Niniejsze informacje są wynik symulacji matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 35x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2858 Gs
285.8 mT
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
mocny |
| 1 mm |
2328 Gs
232.8 mT
|
4.12 kg / 9.09 lbs
4121.1 g / 40.4 N
|
mocny |
| 2 mm |
1801 Gs
180.1 mT
|
2.47 kg / 5.44 lbs
2467.6 g / 24.2 N
|
mocny |
| 3 mm |
1376 Gs
137.6 mT
|
1.44 kg / 3.18 lbs
1440.7 g / 14.1 N
|
niskie ryzyko |
| 5 mm |
832 Gs
83.2 mT
|
0.53 kg / 1.16 lbs
526.9 g / 5.2 N
|
niskie ryzyko |
| 10 mm |
318 Gs
31.8 mT
|
0.08 kg / 0.17 lbs
77.1 g / 0.8 N
|
niskie ryzyko |
| 15 mm |
158 Gs
15.8 mT
|
0.02 kg / 0.04 lbs
18.9 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
89 Gs
8.9 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 35x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 1.82 lbs
824.0 g / 8.1 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 1.09 lbs
494.0 g / 4.8 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 35x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.86 kg / 4.11 lbs
1863.0 g / 18.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 1.37 lbs
621.0 g / 6.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.11 kg / 6.85 lbs
3105.0 g / 30.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 35x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 1.37 lbs
621.0 g / 6.1 N
|
| 1 mm |
|
1.55 kg / 3.42 lbs
1552.5 g / 15.2 N
|
| 2 mm |
|
3.11 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 3 mm |
|
4.66 kg / 10.27 lbs
4657.5 g / 45.7 N
|
| 5 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 10 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 11 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 12 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 35x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
OK |
| 40 °C | -2.2% |
6.07 kg / 13.39 lbs
6073.4 g / 59.6 N
|
OK |
| 60 °C | -4.4% |
5.94 kg / 13.09 lbs
5936.8 g / 58.2 N
|
|
| 80 °C | -6.6% |
5.80 kg / 12.79 lbs
5800.1 g / 56.9 N
|
|
| 100 °C | -28.8% |
4.42 kg / 9.75 lbs
4421.5 g / 43.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 35x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.34 kg / 27.19 lbs
4 231 Gs
|
1.85 kg / 4.08 lbs
1850 g / 18.2 N
|
N/A |
| 1 mm |
10.25 kg / 22.59 lbs
5 209 Gs
|
1.54 kg / 3.39 lbs
1537 g / 15.1 N
|
9.22 kg / 20.33 lbs
~0 Gs
|
| 2 mm |
8.19 kg / 18.05 lbs
4 656 Gs
|
1.23 kg / 2.71 lbs
1228 g / 12.0 N
|
7.37 kg / 16.24 lbs
~0 Gs
|
| 3 mm |
6.38 kg / 14.07 lbs
4 110 Gs
|
0.96 kg / 2.11 lbs
957 g / 9.4 N
|
5.74 kg / 12.66 lbs
~0 Gs
|
| 5 mm |
3.74 kg / 8.25 lbs
3 149 Gs
|
0.56 kg / 1.24 lbs
562 g / 5.5 N
|
3.37 kg / 7.43 lbs
~0 Gs
|
| 10 mm |
1.05 kg / 2.31 lbs
1 665 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 20 mm |
0.15 kg / 0.34 lbs
637 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 35x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 35x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.12 km/h
(9.48 m/s)
|
0.25 J | |
| 30 mm |
58.65 km/h
(16.29 m/s)
|
0.73 J | |
| 50 mm |
75.71 km/h
(21.03 m/s)
|
1.22 J | |
| 100 mm |
107.07 km/h
(29.74 m/s)
|
2.44 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 35x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 35x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 851 Mx | 58.5 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 35x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.21 kg | Standard |
| Woda (dno rzeki) |
7.11 kg
(+0.90 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co się na to składa?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- o grubości przynajmniej 10 mm
- z płaszczyzną wolną od rys
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Alergia na nikiel
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Ostrożność wymagana
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Ryzyko zmiażdżenia
Bloki magnetyczne mogą połamać palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Zakaz zabawy
Te produkty magnetyczne to nie zabawki. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
