MPL 30x20x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020286
GTIN/EAN: 5906301811848
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.30 kg / 61.84 N
Indukcja magnetyczna
180.57 mT / 1806 Gs
Powłoka
[NiCuNi] nikiel
10.23 ZŁ z VAT / szt. + cena za transport
8.32 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz trudności w wyborze?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie pisz za pomocą
formularz zgłoszeniowy
na naszej stronie.
Siłę a także kształt elementów magnetycznych wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 30x20x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x20x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020286 |
| GTIN/EAN | 5906301811848 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.30 kg / 61.84 N |
| Indukcja magnetyczna ~ ? | 180.57 mT / 1806 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - dane
Przedstawione wartości są wynik analizy fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MPL 30x20x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
6.30 kg / 6300.0 g
61.8 N
|
mocny |
| 1 mm |
1728 Gs
172.8 mT
|
5.77 kg / 5771.5 g
56.6 N
|
mocny |
| 2 mm |
1628 Gs
162.8 mT
|
5.13 kg / 5125.7 g
50.3 N
|
mocny |
| 3 mm |
1515 Gs
151.5 mT
|
4.43 kg / 4434.6 g
43.5 N
|
mocny |
| 5 mm |
1271 Gs
127.1 mT
|
3.12 kg / 3124.3 g
30.6 N
|
mocny |
| 10 mm |
751 Gs
75.1 mT
|
1.09 kg / 1088.7 g
10.7 N
|
bezpieczny |
| 15 mm |
435 Gs
43.5 mT
|
0.37 kg / 366.3 g
3.6 N
|
bezpieczny |
| 20 mm |
262 Gs
26.2 mT
|
0.13 kg / 132.6 g
1.3 N
|
bezpieczny |
| 30 mm |
110 Gs
11.0 mT
|
0.02 kg / 23.2 g
0.2 N
|
bezpieczny |
| 50 mm |
30 Gs
3.0 mT
|
0.00 kg / 1.8 g
0.0 N
|
bezpieczny |
MPL 30x20x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.26 kg / 1260.0 g
12.4 N
|
| 1 mm | Stal (~0.2) |
1.15 kg / 1154.0 g
11.3 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 1026.0 g
10.1 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 886.0 g
8.7 N
|
| 5 mm | Stal (~0.2) |
0.62 kg / 624.0 g
6.1 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 218.0 g
2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 30x20x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.89 kg / 1890.0 g
18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.26 kg / 1260.0 g
12.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 630.0 g
6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.15 kg / 3150.0 g
30.9 N
|
MPL 30x20x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 630.0 g
6.2 N
|
| 1 mm |
|
1.58 kg / 1575.0 g
15.5 N
|
| 2 mm |
|
3.15 kg / 3150.0 g
30.9 N
|
| 5 mm |
|
6.30 kg / 6300.0 g
61.8 N
|
| 10 mm |
|
6.30 kg / 6300.0 g
61.8 N
|
MPL 30x20x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.30 kg / 6300.0 g
61.8 N
|
OK |
| 40 °C | -2.2% |
6.16 kg / 6161.4 g
60.4 N
|
OK |
| 60 °C | -4.4% |
6.02 kg / 6022.8 g
59.1 N
|
|
| 80 °C | -6.6% |
5.88 kg / 5884.2 g
57.7 N
|
|
| 100 °C | -28.8% |
4.49 kg / 4485.6 g
44.0 N
|
MPL 30x20x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.06 kg / 12057 g
118.3 N
3 198 Gs
|
N/A |
| 1 mm |
11.59 kg / 11591 g
113.7 N
3 540 Gs
|
10.43 kg / 10432 g
102.3 N
~0 Gs
|
| 2 mm |
11.05 kg / 11046 g
108.4 N
3 456 Gs
|
9.94 kg / 9941 g
97.5 N
~0 Gs
|
| 3 mm |
10.45 kg / 10446 g
102.5 N
3 361 Gs
|
9.40 kg / 9402 g
92.2 N
~0 Gs
|
| 5 mm |
9.15 kg / 9152 g
89.8 N
3 146 Gs
|
8.24 kg / 8236 g
80.8 N
~0 Gs
|
| 10 mm |
5.98 kg / 5979 g
58.7 N
2 543 Gs
|
5.38 kg / 5381 g
52.8 N
~0 Gs
|
| 20 mm |
2.08 kg / 2084 g
20.4 N
1 501 Gs
|
1.88 kg / 1875 g
18.4 N
~0 Gs
|
| 50 mm |
0.10 kg / 101 g
1.0 N
331 Gs
|
0.09 kg / 91 g
0.9 N
~0 Gs
|
MPL 30x20x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 30x20x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
0.30 J | |
| 30 mm |
32.75 km/h
(9.10 m/s)
|
0.75 J | |
| 50 mm |
42.20 km/h
(11.72 m/s)
|
1.24 J | |
| 100 mm |
59.66 km/h
(16.57 m/s)
|
2.47 J |
MPL 30x20x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x20x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.8 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
MPL 30x20x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.30 kg | Standard |
| Woda (dno rzeki) |
7.21 kg
(+0.91 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, która służy jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Interferencja medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Niszczenie danych
Potężne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Limity termiczne
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Zakłócenia GPS i telefonów
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada uczulenie na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może powodować wysypkę. Sugerujemy stosowanie rękawiczek ochronnych.
