MPL 30x20x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020286
GTIN/EAN: 5906301811848
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.30 kg / 61.84 N
Indukcja magnetyczna
180.57 mT / 1806 Gs
Powłoka
[NiCuNi] nikiel
10.23 ZŁ z VAT / szt. + cena za transport
8.32 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co kupić?
Dzwoń do nas
+48 22 499 98 98
albo zostaw wiadomość za pomocą
formularz zapytania
w sekcji kontakt.
Moc oraz formę magnesu zweryfikujesz w naszym
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 30x20x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x20x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020286 |
| GTIN/EAN | 5906301811848 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.30 kg / 61.84 N |
| Indukcja magnetyczna ~ ? | 180.57 mT / 1806 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - parametry techniczne
Przedstawione dane są rezultat kalkulacji inżynierskiej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
MPL 30x20x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
6.30 kg / 6300.0 g
61.8 N
|
uwaga |
| 1 mm |
1728 Gs
172.8 mT
|
5.77 kg / 5771.5 g
56.6 N
|
uwaga |
| 2 mm |
1628 Gs
162.8 mT
|
5.13 kg / 5125.7 g
50.3 N
|
uwaga |
| 3 mm |
1515 Gs
151.5 mT
|
4.43 kg / 4434.6 g
43.5 N
|
uwaga |
| 5 mm |
1271 Gs
127.1 mT
|
3.12 kg / 3124.3 g
30.6 N
|
uwaga |
| 10 mm |
751 Gs
75.1 mT
|
1.09 kg / 1088.7 g
10.7 N
|
niskie ryzyko |
| 15 mm |
435 Gs
43.5 mT
|
0.37 kg / 366.3 g
3.6 N
|
niskie ryzyko |
| 20 mm |
262 Gs
26.2 mT
|
0.13 kg / 132.6 g
1.3 N
|
niskie ryzyko |
| 30 mm |
110 Gs
11.0 mT
|
0.02 kg / 23.2 g
0.2 N
|
niskie ryzyko |
| 50 mm |
30 Gs
3.0 mT
|
0.00 kg / 1.8 g
0.0 N
|
niskie ryzyko |
MPL 30x20x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.26 kg / 1260.0 g
12.4 N
|
| 1 mm | Stal (~0.2) |
1.15 kg / 1154.0 g
11.3 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 1026.0 g
10.1 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 886.0 g
8.7 N
|
| 5 mm | Stal (~0.2) |
0.62 kg / 624.0 g
6.1 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 218.0 g
2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 30x20x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.89 kg / 1890.0 g
18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.26 kg / 1260.0 g
12.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 630.0 g
6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.15 kg / 3150.0 g
30.9 N
|
MPL 30x20x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 630.0 g
6.2 N
|
| 1 mm |
|
1.58 kg / 1575.0 g
15.5 N
|
| 2 mm |
|
3.15 kg / 3150.0 g
30.9 N
|
| 5 mm |
|
6.30 kg / 6300.0 g
61.8 N
|
| 10 mm |
|
6.30 kg / 6300.0 g
61.8 N
|
MPL 30x20x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.30 kg / 6300.0 g
61.8 N
|
OK |
| 40 °C | -2.2% |
6.16 kg / 6161.4 g
60.4 N
|
OK |
| 60 °C | -4.4% |
6.02 kg / 6022.8 g
59.1 N
|
|
| 80 °C | -6.6% |
5.88 kg / 5884.2 g
57.7 N
|
|
| 100 °C | -28.8% |
4.49 kg / 4485.6 g
44.0 N
|
MPL 30x20x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.06 kg / 12057 g
118.3 N
3 198 Gs
|
N/A |
| 1 mm |
11.59 kg / 11591 g
113.7 N
3 540 Gs
|
10.43 kg / 10432 g
102.3 N
~0 Gs
|
| 2 mm |
11.05 kg / 11046 g
108.4 N
3 456 Gs
|
9.94 kg / 9941 g
97.5 N
~0 Gs
|
| 3 mm |
10.45 kg / 10446 g
102.5 N
3 361 Gs
|
9.40 kg / 9402 g
92.2 N
~0 Gs
|
| 5 mm |
9.15 kg / 9152 g
89.8 N
3 146 Gs
|
8.24 kg / 8236 g
80.8 N
~0 Gs
|
| 10 mm |
5.98 kg / 5979 g
58.7 N
2 543 Gs
|
5.38 kg / 5381 g
52.8 N
~0 Gs
|
| 20 mm |
2.08 kg / 2084 g
20.4 N
1 501 Gs
|
1.88 kg / 1875 g
18.4 N
~0 Gs
|
| 50 mm |
0.10 kg / 101 g
1.0 N
331 Gs
|
0.09 kg / 91 g
0.9 N
~0 Gs
|
MPL 30x20x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 30x20x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
0.30 J | |
| 30 mm |
32.75 km/h
(9.10 m/s)
|
0.75 J | |
| 50 mm |
42.20 km/h
(11.72 m/s)
|
1.24 J | |
| 100 mm |
59.66 km/h
(16.57 m/s)
|
2.47 J |
MPL 30x20x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x20x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.8 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
MPL 30x20x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.30 kg | Standard |
| Woda (dno rzeki) |
7.21 kg
(+0.91 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z zastosowaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Ostrożność wymagana
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Chronić przed dziećmi
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i siłę przyciągania.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
