MPL 30x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020138
GTIN/EAN: 5906301811442
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.89 kg / 87.23 N
Indukcja magnetyczna
329.52 mT / 3295 Gs
Powłoka
[NiCuNi] nikiel
4.26 ZŁ z VAT / szt. + cena za transport
3.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz trudności w wyborze?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo daj znać przez
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig a także budowę magnesów zobaczysz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 30x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020138 |
| GTIN/EAN | 5906301811442 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.89 kg / 87.23 N |
| Indukcja magnetyczna ~ ? | 329.52 mT / 3295 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Niniejsze dane są bezpośredni efekt symulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MPL 30x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3294 Gs
329.4 mT
|
8.89 kg / 8890.0 g
87.2 N
|
mocny |
| 1 mm |
2866 Gs
286.6 mT
|
6.73 kg / 6731.1 g
66.0 N
|
mocny |
| 2 mm |
2424 Gs
242.4 mT
|
4.82 kg / 4816.4 g
47.2 N
|
mocny |
| 3 mm |
2022 Gs
202.2 mT
|
3.35 kg / 3349.6 g
32.9 N
|
mocny |
| 5 mm |
1397 Gs
139.7 mT
|
1.60 kg / 1600.3 g
15.7 N
|
niskie ryzyko |
| 10 mm |
615 Gs
61.5 mT
|
0.31 kg / 309.8 g
3.0 N
|
niskie ryzyko |
| 15 mm |
314 Gs
31.4 mT
|
0.08 kg / 80.6 g
0.8 N
|
niskie ryzyko |
| 20 mm |
177 Gs
17.7 mT
|
0.03 kg / 25.8 g
0.3 N
|
niskie ryzyko |
| 30 mm |
70 Gs
7.0 mT
|
0.00 kg / 4.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
MPL 30x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.78 kg / 1778.0 g
17.4 N
|
| 1 mm | Stal (~0.2) |
1.35 kg / 1346.0 g
13.2 N
|
| 2 mm | Stal (~0.2) |
0.96 kg / 964.0 g
9.5 N
|
| 3 mm | Stal (~0.2) |
0.67 kg / 670.0 g
6.6 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 320.0 g
3.1 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 30x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.67 kg / 2667.0 g
26.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.78 kg / 1778.0 g
17.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 889.0 g
8.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.45 kg / 4445.0 g
43.6 N
|
MPL 30x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 889.0 g
8.7 N
|
| 1 mm |
|
2.22 kg / 2222.5 g
21.8 N
|
| 2 mm |
|
4.45 kg / 4445.0 g
43.6 N
|
| 5 mm |
|
8.89 kg / 8890.0 g
87.2 N
|
| 10 mm |
|
8.89 kg / 8890.0 g
87.2 N
|
MPL 30x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.89 kg / 8890.0 g
87.2 N
|
OK |
| 40 °C | -2.2% |
8.69 kg / 8694.4 g
85.3 N
|
OK |
| 60 °C | -4.4% |
8.50 kg / 8498.8 g
83.4 N
|
|
| 80 °C | -6.6% |
8.30 kg / 8303.3 g
81.5 N
|
|
| 100 °C | -28.8% |
6.33 kg / 6329.7 g
62.1 N
|
MPL 30x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
20.06 kg / 20064 g
196.8 N
4 689 Gs
|
N/A |
| 1 mm |
17.63 kg / 17628 g
172.9 N
6 174 Gs
|
15.86 kg / 15865 g
155.6 N
~0 Gs
|
| 2 mm |
15.19 kg / 15191 g
149.0 N
5 732 Gs
|
13.67 kg / 13672 g
134.1 N
~0 Gs
|
| 3 mm |
12.92 kg / 12916 g
126.7 N
5 285 Gs
|
11.62 kg / 11624 g
114.0 N
~0 Gs
|
| 5 mm |
9.08 kg / 9084 g
89.1 N
4 432 Gs
|
8.18 kg / 8176 g
80.2 N
~0 Gs
|
| 10 mm |
3.61 kg / 3612 g
35.4 N
2 795 Gs
|
3.25 kg / 3250 g
31.9 N
~0 Gs
|
| 20 mm |
0.70 kg / 699 g
6.9 N
1 230 Gs
|
0.63 kg / 629 g
6.2 N
~0 Gs
|
| 50 mm |
0.02 kg / 22 g
0.2 N
217 Gs
|
0.02 kg / 20 g
0.2 N
~0 Gs
|
MPL 30x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 30x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.96 km/h
(8.04 m/s)
|
0.36 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.05 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
1.74 J | |
| 100 mm |
89.65 km/h
(24.90 m/s)
|
3.49 J |
MPL 30x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 370 Mx | 93.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
MPL 30x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.89 kg | Standard |
| Woda (dno rzeki) |
10.18 kg
(+1.29 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (wg testów).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy całkowitym braku odstępu (brak powłok)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża nośność.
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Zakłócenia GPS i telefonów
Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Produkt nie dla dzieci
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Nadwrażliwość na metale
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
