MPL 30x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020138
GTIN/EAN: 5906301811442
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.89 kg / 87.23 N
Indukcja magnetyczna
329.52 mT / 3295 Gs
Powłoka
[NiCuNi] nikiel
4.26 ZŁ z VAT / szt. + cena za transport
3.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
nasz formularz online
przez naszą stronę.
Moc i formę elementów magnetycznych obliczysz u nas w
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MPL 30x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020138 |
| GTIN/EAN | 5906301811442 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.89 kg / 87.23 N |
| Indukcja magnetyczna ~ ? | 329.52 mT / 3295 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią rezultat analizy fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 30x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3294 Gs
329.4 mT
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
mocny |
| 1 mm |
2866 Gs
286.6 mT
|
6.73 kg / 14.84 lbs
6731.1 g / 66.0 N
|
mocny |
| 2 mm |
2424 Gs
242.4 mT
|
4.82 kg / 10.62 lbs
4816.4 g / 47.2 N
|
mocny |
| 3 mm |
2022 Gs
202.2 mT
|
3.35 kg / 7.38 lbs
3349.6 g / 32.9 N
|
mocny |
| 5 mm |
1397 Gs
139.7 mT
|
1.60 kg / 3.53 lbs
1600.3 g / 15.7 N
|
niskie ryzyko |
| 10 mm |
615 Gs
61.5 mT
|
0.31 kg / 0.68 lbs
309.8 g / 3.0 N
|
niskie ryzyko |
| 15 mm |
314 Gs
31.4 mT
|
0.08 kg / 0.18 lbs
80.6 g / 0.8 N
|
niskie ryzyko |
| 20 mm |
177 Gs
17.7 mT
|
0.03 kg / 0.06 lbs
25.8 g / 0.3 N
|
niskie ryzyko |
| 30 mm |
70 Gs
7.0 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 30x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| 1 mm | Stal (~0.2) |
1.35 kg / 2.97 lbs
1346.0 g / 13.2 N
|
| 2 mm | Stal (~0.2) |
0.96 kg / 2.13 lbs
964.0 g / 9.5 N
|
| 3 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
670.0 g / 6.6 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 30x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.67 kg / 5.88 lbs
2667.0 g / 26.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 1.96 lbs
889.0 g / 8.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.45 kg / 9.80 lbs
4445.0 g / 43.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 30x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 1.96 lbs
889.0 g / 8.7 N
|
| 1 mm |
|
2.22 kg / 4.90 lbs
2222.5 g / 21.8 N
|
| 2 mm |
|
4.45 kg / 9.80 lbs
4445.0 g / 43.6 N
|
| 3 mm |
|
6.67 kg / 14.70 lbs
6667.5 g / 65.4 N
|
| 5 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 10 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 11 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 12 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 30x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
OK |
| 40 °C | -2.2% |
8.69 kg / 19.17 lbs
8694.4 g / 85.3 N
|
OK |
| 60 °C | -4.4% |
8.50 kg / 18.74 lbs
8498.8 g / 83.4 N
|
|
| 80 °C | -6.6% |
8.30 kg / 18.31 lbs
8303.3 g / 81.5 N
|
|
| 100 °C | -28.8% |
6.33 kg / 13.95 lbs
6329.7 g / 62.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 30x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.06 kg / 44.23 lbs
4 689 Gs
|
3.01 kg / 6.63 lbs
3010 g / 29.5 N
|
N/A |
| 1 mm |
17.63 kg / 38.86 lbs
6 174 Gs
|
2.64 kg / 5.83 lbs
2644 g / 25.9 N
|
15.86 kg / 34.98 lbs
~0 Gs
|
| 2 mm |
15.19 kg / 33.49 lbs
5 732 Gs
|
2.28 kg / 5.02 lbs
2279 g / 22.4 N
|
13.67 kg / 30.14 lbs
~0 Gs
|
| 3 mm |
12.92 kg / 28.47 lbs
5 285 Gs
|
1.94 kg / 4.27 lbs
1937 g / 19.0 N
|
11.62 kg / 25.63 lbs
~0 Gs
|
| 5 mm |
9.08 kg / 20.03 lbs
4 432 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.02 lbs
~0 Gs
|
| 10 mm |
3.61 kg / 7.96 lbs
2 795 Gs
|
0.54 kg / 1.19 lbs
542 g / 5.3 N
|
3.25 kg / 7.17 lbs
~0 Gs
|
| 20 mm |
0.70 kg / 1.54 lbs
1 230 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.05 lbs
217 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
141 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
68 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
50 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 30x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 30x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.96 km/h
(8.04 m/s)
|
0.36 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.05 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
1.74 J | |
| 100 mm |
89.65 km/h
(24.90 m/s)
|
3.49 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 30x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 370 Mx | 93.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 30x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.89 kg | Standard |
| Woda (dno rzeki) |
10.18 kg
(+1.29 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość blachy – za chuda stal nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Karty i dyski
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Rozruszniki serca
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ostrzeżenie dla alergików
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Ryzyko pęknięcia
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Smartfony i tablety
Silne pole magnetyczne destabilizuje funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Ryzyko połknięcia
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
