MPL 30x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020138
GTIN/EAN: 5906301811442
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.89 kg / 87.23 N
Indukcja magnetyczna
329.52 mT / 3295 Gs
Powłoka
[NiCuNi] nikiel
4.26 ZŁ z VAT / szt. + cena za transport
3.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo pisz poprzez
formularz zapytania
na stronie kontaktowej.
Siłę a także wygląd elementów magnetycznych zweryfikujesz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja - MPL 30x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020138 |
| GTIN/EAN | 5906301811442 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.89 kg / 87.23 N |
| Indukcja magnetyczna ~ ? | 329.52 mT / 3295 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią wynik symulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 30x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3294 Gs
329.4 mT
|
8.89 kg / 8890.0 g
87.2 N
|
uwaga |
| 1 mm |
2866 Gs
286.6 mT
|
6.73 kg / 6731.1 g
66.0 N
|
uwaga |
| 2 mm |
2424 Gs
242.4 mT
|
4.82 kg / 4816.4 g
47.2 N
|
uwaga |
| 3 mm |
2022 Gs
202.2 mT
|
3.35 kg / 3349.6 g
32.9 N
|
uwaga |
| 5 mm |
1397 Gs
139.7 mT
|
1.60 kg / 1600.3 g
15.7 N
|
bezpieczny |
| 10 mm |
615 Gs
61.5 mT
|
0.31 kg / 309.8 g
3.0 N
|
bezpieczny |
| 15 mm |
314 Gs
31.4 mT
|
0.08 kg / 80.6 g
0.8 N
|
bezpieczny |
| 20 mm |
177 Gs
17.7 mT
|
0.03 kg / 25.8 g
0.3 N
|
bezpieczny |
| 30 mm |
70 Gs
7.0 mT
|
0.00 kg / 4.1 g
0.0 N
|
bezpieczny |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 30x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.78 kg / 1778.0 g
17.4 N
|
| 1 mm | Stal (~0.2) |
1.35 kg / 1346.0 g
13.2 N
|
| 2 mm | Stal (~0.2) |
0.96 kg / 964.0 g
9.5 N
|
| 3 mm | Stal (~0.2) |
0.67 kg / 670.0 g
6.6 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 320.0 g
3.1 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 30x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.67 kg / 2667.0 g
26.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.78 kg / 1778.0 g
17.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 889.0 g
8.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.45 kg / 4445.0 g
43.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 30x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 889.0 g
8.7 N
|
| 1 mm |
|
2.22 kg / 2222.5 g
21.8 N
|
| 2 mm |
|
4.45 kg / 4445.0 g
43.6 N
|
| 5 mm |
|
8.89 kg / 8890.0 g
87.2 N
|
| 10 mm |
|
8.89 kg / 8890.0 g
87.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 30x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.89 kg / 8890.0 g
87.2 N
|
OK |
| 40 °C | -2.2% |
8.69 kg / 8694.4 g
85.3 N
|
OK |
| 60 °C | -4.4% |
8.50 kg / 8498.8 g
83.4 N
|
|
| 80 °C | -6.6% |
8.30 kg / 8303.3 g
81.5 N
|
|
| 100 °C | -28.8% |
6.33 kg / 6329.7 g
62.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 30x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
20.06 kg / 20064 g
196.8 N
4 689 Gs
|
N/A |
| 1 mm |
17.63 kg / 17628 g
172.9 N
6 174 Gs
|
15.86 kg / 15865 g
155.6 N
~0 Gs
|
| 2 mm |
15.19 kg / 15191 g
149.0 N
5 732 Gs
|
13.67 kg / 13672 g
134.1 N
~0 Gs
|
| 3 mm |
12.92 kg / 12916 g
126.7 N
5 285 Gs
|
11.62 kg / 11624 g
114.0 N
~0 Gs
|
| 5 mm |
9.08 kg / 9084 g
89.1 N
4 432 Gs
|
8.18 kg / 8176 g
80.2 N
~0 Gs
|
| 10 mm |
3.61 kg / 3612 g
35.4 N
2 795 Gs
|
3.25 kg / 3250 g
31.9 N
~0 Gs
|
| 20 mm |
0.70 kg / 699 g
6.9 N
1 230 Gs
|
0.63 kg / 629 g
6.2 N
~0 Gs
|
| 50 mm |
0.02 kg / 22 g
0.2 N
217 Gs
|
0.02 kg / 20 g
0.2 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 30x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 30x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.96 km/h
(8.04 m/s)
|
0.36 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.05 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
1.74 J | |
| 100 mm |
89.65 km/h
(24.90 m/s)
|
3.49 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 30x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 370 Mx | 93.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.89 kg | Standard |
| Woda (dno rzeki) |
10.18 kg
(+1.29 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- z użyciem blachy ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
To nie jest zabawka
Neodymowe magnesy to nie zabawki. Inhalacja kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Bezpieczny dystans
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Dla uczulonych
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Ryzyko pożaru
Proszek powstający podczas obróbki magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Urazy ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
