MPL 20x5x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020131
GTIN: 5906301811374
Długość
20 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.46 kg / 33.96 N
Indukcja magnetyczna
358.88 mT / 3589 Gs
Powłoka
[NiCuNi] nikiel
1.058 ZŁ z VAT / szt. + cena za transport
0.860 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub pisz przez
formularz zapytania
na stronie kontaktowej.
Siłę oraz wygląd elementów magnetycznych skontrolujesz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 20x5x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 20x5x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020131 |
| GTIN | 5906301811374 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.46 kg / 33.96 N |
| Indukcja magnetyczna ~ ? | 358.88 mT / 3589 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe dane są wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału NdFeB. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
MPL 20x5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3585 Gs
358.5 mT
|
3.46 kg / 3460.0 g
33.9 N
|
uwaga |
| 1 mm |
2619 Gs
261.9 mT
|
1.85 kg / 1846.6 g
18.1 N
|
niskie ryzyko |
| 2 mm |
1818 Gs
181.8 mT
|
0.89 kg / 889.8 g
8.7 N
|
niskie ryzyko |
| 3 mm |
1279 Gs
127.9 mT
|
0.44 kg / 440.2 g
4.3 N
|
niskie ryzyko |
| 5 mm |
696 Gs
69.6 mT
|
0.13 kg / 130.6 g
1.3 N
|
niskie ryzyko |
| 10 mm |
225 Gs
22.5 mT
|
0.01 kg / 13.6 g
0.1 N
|
niskie ryzyko |
| 15 mm |
97 Gs
9.7 mT
|
0.00 kg / 2.5 g
0.0 N
|
niskie ryzyko |
| 20 mm |
49 Gs
4.9 mT
|
0.00 kg / 0.6 g
0.0 N
|
niskie ryzyko |
| 30 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 20x5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 692.0 g
6.8 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 370.0 g
3.6 N
|
| 2 mm | Stal (~0.2) |
0.18 kg / 178.0 g
1.7 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 20x5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 1038.0 g
10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 692.0 g
6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 346.0 g
3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 1730.0 g
17.0 N
|
MPL 20x5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 346.0 g
3.4 N
|
| 1 mm |
|
0.87 kg / 865.0 g
8.5 N
|
| 2 mm |
|
1.73 kg / 1730.0 g
17.0 N
|
| 5 mm |
|
3.46 kg / 3460.0 g
33.9 N
|
| 10 mm |
|
3.46 kg / 3460.0 g
33.9 N
|
MPL 20x5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.46 kg / 3460.0 g
33.9 N
|
OK |
| 40 °C | -2.2% |
3.38 kg / 3383.9 g
33.2 N
|
OK |
| 60 °C | -4.4% |
3.31 kg / 3307.8 g
32.4 N
|
|
| 80 °C | -6.6% |
3.23 kg / 3231.6 g
31.7 N
|
|
| 100 °C | -28.8% |
2.46 kg / 2463.5 g
24.2 N
|
MPL 20x5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.92 kg / 7924 g
77.7 N
4 860 Gs
|
N/A |
| 1 mm |
5.94 kg / 5942 g
58.3 N
6 209 Gs
|
5.35 kg / 5348 g
52.5 N
~0 Gs
|
| 2 mm |
4.23 kg / 4229 g
41.5 N
5 238 Gs
|
3.81 kg / 3806 g
37.3 N
~0 Gs
|
| 3 mm |
2.94 kg / 2942 g
28.9 N
4 369 Gs
|
2.65 kg / 2647 g
26.0 N
~0 Gs
|
| 5 mm |
1.42 kg / 1423 g
14.0 N
3 039 Gs
|
1.28 kg / 1281 g
12.6 N
~0 Gs
|
| 10 mm |
0.30 kg / 299 g
2.9 N
1 393 Gs
|
0.27 kg / 269 g
2.6 N
~0 Gs
|
| 20 mm |
0.03 kg / 31 g
0.3 N
450 Gs
|
0.03 kg / 28 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
56 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 20x5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 20x5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.65 km/h
(11.01 m/s)
|
0.14 J | |
| 30 mm |
68.50 km/h
(19.03 m/s)
|
0.41 J | |
| 50 mm |
88.43 km/h
(24.56 m/s)
|
0.68 J | |
| 100 mm |
125.06 km/h
(34.74 m/s)
|
1.36 J |
MPL 20x5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 20x5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
MPL 20x5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.46 kg | Standard |
| Woda (dno rzeki) |
3.96 kg
(+0.50 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
Sprawdź inne propozycje
Wady oraz zalety magnesów z neodymu NdFeB.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o grubości przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (brak powłok)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans (między magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Nie lekceważ mocy
Używaj magnesy świadomie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Zakaz obróbki
Proszek generowany podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko uczulenia
Niektóre osoby posiada uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może powodować zaczerwienienie skóry. Rekomendujemy używanie rękawiczek ochronnych.
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ryzyko zmiażdżenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Uwaga: zadławienie
Silne magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
