MPL 20x10x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020127
GTIN/EAN: 5906301811336
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
3 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.88 kg / 18.44 N
Indukcja magnetyczna
168.24 mT / 1682 Gs
Powłoka
[NiCuNi] nikiel
1.538 ZŁ z VAT / szt. + cena za transport
1.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie napisz korzystając z
formularz zapytania
przez naszą stronę.
Moc i formę magnesu wyliczysz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja produktu - MPL 20x10x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020127 |
| GTIN/EAN | 5906301811336 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.88 kg / 18.44 N |
| Indukcja magnetyczna ~ ? | 168.24 mT / 1682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Niniejsze dane stanowią bezpośredni efekt kalkulacji fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 20x10x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1682 Gs
168.2 mT
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
niskie ryzyko |
| 1 mm |
1524 Gs
152.4 mT
|
1.54 kg / 3.40 lbs
1544.3 g / 15.1 N
|
niskie ryzyko |
| 2 mm |
1316 Gs
131.6 mT
|
1.15 kg / 2.54 lbs
1150.1 g / 11.3 N
|
niskie ryzyko |
| 3 mm |
1101 Gs
110.1 mT
|
0.81 kg / 1.78 lbs
806.0 g / 7.9 N
|
niskie ryzyko |
| 5 mm |
744 Gs
74.4 mT
|
0.37 kg / 0.81 lbs
367.6 g / 3.6 N
|
niskie ryzyko |
| 10 mm |
288 Gs
28.8 mT
|
0.06 kg / 0.12 lbs
55.1 g / 0.5 N
|
niskie ryzyko |
| 15 mm |
129 Gs
12.9 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
66 Gs
6.6 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 20x10x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
308.0 g / 3.0 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.36 lbs
162.0 g / 1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 20x10x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.56 kg / 1.24 lbs
564.0 g / 5.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 20x10x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 1 mm |
|
0.47 kg / 1.04 lbs
470.0 g / 4.6 N
|
| 2 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
| 3 mm |
|
1.41 kg / 3.11 lbs
1410.0 g / 13.8 N
|
| 5 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 10 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 11 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 12 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 20x10x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
OK |
| 40 °C | -2.2% |
1.84 kg / 4.05 lbs
1838.6 g / 18.0 N
|
OK |
| 60 °C | -4.4% |
1.80 kg / 3.96 lbs
1797.3 g / 17.6 N
|
|
| 80 °C | -6.6% |
1.76 kg / 3.87 lbs
1755.9 g / 17.2 N
|
|
| 100 °C | -28.8% |
1.34 kg / 2.95 lbs
1338.6 g / 13.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 20x10x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.49 kg / 7.69 lbs
2 995 Gs
|
0.52 kg / 1.15 lbs
523 g / 5.1 N
|
N/A |
| 1 mm |
3.21 kg / 7.08 lbs
3 227 Gs
|
0.48 kg / 1.06 lbs
481 g / 4.7 N
|
2.89 kg / 6.37 lbs
~0 Gs
|
| 2 mm |
2.87 kg / 6.32 lbs
3 049 Gs
|
0.43 kg / 0.95 lbs
430 g / 4.2 N
|
2.58 kg / 5.69 lbs
~0 Gs
|
| 3 mm |
2.50 kg / 5.51 lbs
2 846 Gs
|
0.37 kg / 0.83 lbs
375 g / 3.7 N
|
2.25 kg / 4.95 lbs
~0 Gs
|
| 5 mm |
1.80 kg / 3.96 lbs
2 414 Gs
|
0.27 kg / 0.59 lbs
269 g / 2.6 N
|
1.62 kg / 3.56 lbs
~0 Gs
|
| 10 mm |
0.68 kg / 1.50 lbs
1 487 Gs
|
0.10 kg / 0.23 lbs
102 g / 1.0 N
|
0.61 kg / 1.35 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.23 lbs
576 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 20x10x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x10x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.70 km/h
(7.14 m/s)
|
0.08 J | |
| 30 mm |
43.73 km/h
(12.15 m/s)
|
0.22 J | |
| 50 mm |
56.45 km/h
(15.68 m/s)
|
0.37 J | |
| 100 mm |
79.84 km/h
(22.18 m/s)
|
0.74 J |
Tabela 9: Odporność na korozję
MPL 20x10x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 20x10x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 825 Mx | 38.2 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 20x10x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.88 kg | Standard |
| Woda (dno rzeki) |
2.15 kg
(+0.27 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem podłoża ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez powłok)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
To nie jest zabawka
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Ochrona dłoni
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Nadwrażliwość na metale
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Ochrona oczu
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Limity termiczne
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Bezpieczna praca
Stosuj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
