Magnesy neodymowe: moc, której szukasz

Szukasz ogromnej mocy w małym rozmiarze? Posiadamy w sprzedaży kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do użytku w domu, garażu oraz modelarstwa. Zobacz produkty z szybką wysyłką.

sprawdź pełną ofertę

Sprzęt dla poszukiwaczy skarbów

Rozpocznij przygodę z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w rzekach i jeziorach.

wybierz sprzęt do poszukiwań

Uchwyty magnetyczne przemysłowe

Niezawodne rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy mocowaniu oświetlenia, sensorów oraz reklam.

zobacz dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 20x10x2 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020127

GTIN/EAN: 5906301811336

5.00

Długość

20 mm [±0,1 mm]

Szerokość

10 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

3 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.88 kg / 18.44 N

Indukcja magnetyczna

168.24 mT / 1682 Gs

Powłoka

[NiCuNi] nikiel

1.538 z VAT / szt. + cena za transport

1.250 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1.250 ZŁ
1.538 ZŁ
cena od 500 szt.
1.175 ZŁ
1.445 ZŁ
cena od 2000 szt.
1.100 ZŁ
1.353 ZŁ
Masz problem z wyborem?

Zadzwoń już teraz +48 888 99 98 98 ewentualnie daj znać korzystając z nasz formularz online w sekcji kontakt.
Parametry a także budowę magnesów neodymowych zobaczysz u nas w naszym kalkulatorze magnetycznym.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Dane techniczne produktu - MPL 20x10x2 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 20x10x2 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020127
GTIN/EAN 5906301811336
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 20 mm [±0,1 mm]
Szerokość 10 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 3 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.88 kg / 18.44 N
Indukcja magnetyczna ~ ? 168.24 mT / 1682 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 20x10x2 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - dane

Poniższe dane są bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 20x10x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 1682 Gs
168.2 mT
1.88 kg / 1880.0 g
18.4 N
słaby uchwyt
1 mm 1524 Gs
152.4 mT
1.54 kg / 1544.3 g
15.1 N
słaby uchwyt
2 mm 1316 Gs
131.6 mT
1.15 kg / 1150.1 g
11.3 N
słaby uchwyt
3 mm 1101 Gs
110.1 mT
0.81 kg / 806.0 g
7.9 N
słaby uchwyt
5 mm 744 Gs
74.4 mT
0.37 kg / 367.6 g
3.6 N
słaby uchwyt
10 mm 288 Gs
28.8 mT
0.06 kg / 55.1 g
0.5 N
słaby uchwyt
15 mm 129 Gs
12.9 mT
0.01 kg / 11.1 g
0.1 N
słaby uchwyt
20 mm 66 Gs
6.6 mT
0.00 kg / 2.9 g
0.0 N
słaby uchwyt
30 mm 23 Gs
2.3 mT
0.00 kg / 0.4 g
0.0 N
słaby uchwyt
50 mm 6 Gs
0.6 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt

Tabela 2: Siła równoległa zsuwania (ściana)
MPL 20x10x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.38 kg / 376.0 g
3.7 N
1 mm Stal (~0.2) 0.31 kg / 308.0 g
3.0 N
2 mm Stal (~0.2) 0.23 kg / 230.0 g
2.3 N
3 mm Stal (~0.2) 0.16 kg / 162.0 g
1.6 N
5 mm Stal (~0.2) 0.07 kg / 74.0 g
0.7 N
10 mm Stal (~0.2) 0.01 kg / 12.0 g
0.1 N
15 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 20x10x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.56 kg / 564.0 g
5.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.38 kg / 376.0 g
3.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.19 kg / 188.0 g
1.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.94 kg / 940.0 g
9.2 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 20x10x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.19 kg / 188.0 g
1.8 N
1 mm
25%
0.47 kg / 470.0 g
4.6 N
2 mm
50%
0.94 kg / 940.0 g
9.2 N
5 mm
100%
1.88 kg / 1880.0 g
18.4 N
10 mm
100%
1.88 kg / 1880.0 g
18.4 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 20x10x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 1.88 kg / 1880.0 g
18.4 N
OK
40 °C -2.2% 1.84 kg / 1838.6 g
18.0 N
OK
60 °C -4.4% 1.80 kg / 1797.3 g
17.6 N
80 °C -6.6% 1.76 kg / 1755.9 g
17.2 N
100 °C -28.8% 1.34 kg / 1338.6 g
13.1 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 20x10x2 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 3.49 kg / 3488 g
34.2 N
2 995 Gs
N/A
1 mm 3.21 kg / 3209 g
31.5 N
3 227 Gs
2.89 kg / 2888 g
28.3 N
~0 Gs
2 mm 2.87 kg / 2865 g
28.1 N
3 049 Gs
2.58 kg / 2579 g
25.3 N
~0 Gs
3 mm 2.50 kg / 2497 g
24.5 N
2 846 Gs
2.25 kg / 2247 g
22.0 N
~0 Gs
5 mm 1.80 kg / 1796 g
17.6 N
2 414 Gs
1.62 kg / 1617 g
15.9 N
~0 Gs
10 mm 0.68 kg / 682 g
6.7 N
1 487 Gs
0.61 kg / 614 g
6.0 N
~0 Gs
20 mm 0.10 kg / 102 g
1.0 N
576 Gs
0.09 kg / 92 g
0.9 N
~0 Gs
50 mm 0.00 kg / 2 g
0.0 N
76 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 20x10x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 5.5 cm
Implant słuchowy 10 Gs (1.0 mT) 4.5 cm
Czasomierz 20 Gs (2.0 mT) 3.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Pilot do auta 50 Gs (5.0 mT) 2.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 20x10x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 25.70 km/h
(7.14 m/s)
0.08 J
30 mm 43.73 km/h
(12.15 m/s)
0.22 J
50 mm 56.45 km/h
(15.68 m/s)
0.37 J
100 mm 79.84 km/h
(22.18 m/s)
0.74 J

Tabela 9: Odporność na korozję
MPL 20x10x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MPL 20x10x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 3 825 Mx 38.2 µWb
Współczynnik Pc 0.19 Niski (Płaski)

Tabela 11: Zastosowanie podwodne
MPL 20x10x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.88 kg Standard
Woda (dno rzeki) 2.15 kg
(+0.27 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Montaż na ścianie (ześlizg)

*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.

2. Efektywność, a grubość stali

*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.

3. Stabilność termiczna

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020127-2025
Szybki konwerter jednostek
Udźwig magnesu

Indukcja magnetyczna

Sprawdź inne propozycje

Model MPL 20x10x2 / N38 cechuje się niskim profilem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Ten blok magnetyczny o sile 18.44 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie magnesów blokowych wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 20x10x2 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 20x10x2 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Dzięki płaskiej powierzchni i dużej sile (ok. 1.88 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem zmatowić i przemyć powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 20x10x2 mm, co przy wadze 3 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj udźwig wynoszący około 1.88 kg (siła ~18.44 N), co przy tak kompaktowym kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady magnesów neodymowych Nd2Fe14B.

Zalety

Poza niezwykłą mocą, magnesy neodymowe posiadają dodatkowe korzyści::
  • Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
  • Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.

Słabe strony

Warto znać też słabe strony magnesów neodymowych:
  • Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Analiza siły trzymania

Optymalny udźwig magnesu neodymowegoco się na to składa?

Wartość udźwigu podana w specyfikacji reprezentuje siły granicznej, którą uzyskano w idealnych warunkach testowych, czyli:
  • z wykorzystaniem podłoża ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
  • posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
  • z płaszczyzną oczyszczoną i gładką
  • w warunkach idealnego przylegania (metal do metalu)
  • dla siły przyłożonej pod kątem prostym (w osi magnesu)
  • przy temperaturze pokojowej

Praktyczny udźwig: czynniki wpływające

W rzeczywistych zastosowaniach, faktyczna siła trzymania zależy od kilku kluczowych aspektów, wymienionych od najważniejszych:
  • Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
  • Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
  • Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
  • Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).

Udźwig wyznaczano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.

Zasady BHP dla użytkowników magnesów
Ochrona urządzeń

Bardzo silne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.

Zagrożenie życia

Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.

Ryzyko rozmagnesowania

Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).

Ryzyko uczulenia

Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.

Obróbka mechaniczna

Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.

Uszkodzenia czujników

Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.

Siła neodymu

Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.

Ochrona oczu

Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.

Zagrożenie dla najmłodszych

Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.

Ryzyko zmiażdżenia

Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.

Zachowaj ostrożność! Więcej informacji o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesem.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98