MPL 20x10x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020126
GTIN/EAN: 5906301811329
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
1.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.56 kg / 5.46 N
Indukcja magnetyczna
87.15 mT / 871 Gs
Powłoka
[NiCuNi] nikiel
0.996 ZŁ z VAT / szt. + cena za transport
0.810 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz kontaktowy
na naszej stronie.
Masę a także kształt magnesów wyliczysz dzięki naszemu
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry - MPL 20x10x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020126 |
| GTIN/EAN | 5906301811329 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 1.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.56 kg / 5.46 N |
| Indukcja magnetyczna ~ ? | 87.15 mT / 871 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Niniejsze wartości stanowią wynik symulacji inżynierskiej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 20x10x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
871 Gs
87.1 mT
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
niskie ryzyko |
| 1 mm |
811 Gs
81.1 mT
|
0.49 kg / 1.07 lbs
485.7 g / 4.8 N
|
niskie ryzyko |
| 2 mm |
713 Gs
71.3 mT
|
0.37 kg / 0.83 lbs
374.9 g / 3.7 N
|
niskie ryzyko |
| 3 mm |
603 Gs
60.3 mT
|
0.27 kg / 0.59 lbs
267.9 g / 2.6 N
|
niskie ryzyko |
| 5 mm |
409 Gs
40.9 mT
|
0.12 kg / 0.27 lbs
123.4 g / 1.2 N
|
niskie ryzyko |
| 10 mm |
157 Gs
15.7 mT
|
0.02 kg / 0.04 lbs
18.1 g / 0.2 N
|
niskie ryzyko |
| 15 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.01 lbs
3.5 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 20x10x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
98.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 20x10x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 20x10x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 1 mm |
|
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 2 mm |
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 3 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 5 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 10 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 11 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 12 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 20x10x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
OK |
| 40 °C | -2.2% |
0.55 kg / 1.21 lbs
547.7 g / 5.4 N
|
OK |
| 60 °C | -4.4% |
0.54 kg / 1.18 lbs
535.4 g / 5.3 N
|
|
| 80 °C | -6.6% |
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
|
| 100 °C | -28.8% |
0.40 kg / 0.88 lbs
398.7 g / 3.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 20x10x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.94 kg / 2.06 lbs
1 682 Gs
|
0.14 kg / 0.31 lbs
140 g / 1.4 N
|
N/A |
| 1 mm |
0.89 kg / 1.96 lbs
1 696 Gs
|
0.13 kg / 0.29 lbs
133 g / 1.3 N
|
0.80 kg / 1.76 lbs
~0 Gs
|
| 2 mm |
0.81 kg / 1.79 lbs
1 623 Gs
|
0.12 kg / 0.27 lbs
122 g / 1.2 N
|
0.73 kg / 1.61 lbs
~0 Gs
|
| 3 mm |
0.72 kg / 1.59 lbs
1 530 Gs
|
0.11 kg / 0.24 lbs
108 g / 1.1 N
|
0.65 kg / 1.43 lbs
~0 Gs
|
| 5 mm |
0.53 kg / 1.18 lbs
1 316 Gs
|
0.08 kg / 0.18 lbs
80 g / 0.8 N
|
0.48 kg / 1.06 lbs
~0 Gs
|
| 10 mm |
0.21 kg / 0.45 lbs
818 Gs
|
0.03 kg / 0.07 lbs
31 g / 0.3 N
|
0.19 kg / 0.41 lbs
~0 Gs
|
| 20 mm |
0.03 kg / 0.07 lbs
313 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
40 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 20x10x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 20x10x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.88 km/h
(5.52 m/s)
|
0.02 J | |
| 30 mm |
33.76 km/h
(9.38 m/s)
|
0.07 J | |
| 50 mm |
43.57 km/h
(12.10 m/s)
|
0.11 J | |
| 100 mm |
61.62 km/h
(17.12 m/s)
|
0.22 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x10x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x10x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 173 Mx | 21.7 µWb |
| Współczynnik Pc | 0.10 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 20x10x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.56 kg | Standard |
| Woda (dno rzeki) |
0.64 kg
(+0.08 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.10
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- z wykorzystaniem podłoża ze miękkiej stali, działającej jako zwora magnetyczna
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie dla najmłodszych
Silne magnesy to nie zabawki. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Kompas i GPS
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Maksymalna temperatura
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Interferencja medyczna
Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Ryzyko złamań
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Reakcje alergiczne
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
