MPL 20x10x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020126
GTIN/EAN: 5906301811329
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
1.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.56 kg / 5.46 N
Indukcja magnetyczna
87.15 mT / 871 Gs
Powłoka
[NiCuNi] nikiel
0.996 ZŁ z VAT / szt. + cena za transport
0.810 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie napisz korzystając z
formularz zapytania
na naszej stronie.
Parametry i formę magnesu zobaczysz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry produktu - MPL 20x10x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020126 |
| GTIN/EAN | 5906301811329 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 1.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.56 kg / 5.46 N |
| Indukcja magnetyczna ~ ? | 87.15 mT / 871 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe informacje są rezultat kalkulacji matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 20x10x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
871 Gs
87.1 mT
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
słaby uchwyt |
| 1 mm |
811 Gs
81.1 mT
|
0.49 kg / 1.07 lbs
485.7 g / 4.8 N
|
słaby uchwyt |
| 2 mm |
713 Gs
71.3 mT
|
0.37 kg / 0.83 lbs
374.9 g / 3.7 N
|
słaby uchwyt |
| 3 mm |
603 Gs
60.3 mT
|
0.27 kg / 0.59 lbs
267.9 g / 2.6 N
|
słaby uchwyt |
| 5 mm |
409 Gs
40.9 mT
|
0.12 kg / 0.27 lbs
123.4 g / 1.2 N
|
słaby uchwyt |
| 10 mm |
157 Gs
15.7 mT
|
0.02 kg / 0.04 lbs
18.1 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.01 lbs
3.5 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 20x10x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
98.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 20x10x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 20x10x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 1 mm |
|
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 2 mm |
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 3 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 5 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 10 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 11 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 12 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 20x10x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
OK |
| 40 °C | -2.2% |
0.55 kg / 1.21 lbs
547.7 g / 5.4 N
|
OK |
| 60 °C | -4.4% |
0.54 kg / 1.18 lbs
535.4 g / 5.3 N
|
|
| 80 °C | -6.6% |
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
|
| 100 °C | -28.8% |
0.40 kg / 0.88 lbs
398.7 g / 3.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 20x10x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.94 kg / 2.06 lbs
1 682 Gs
|
0.14 kg / 0.31 lbs
140 g / 1.4 N
|
N/A |
| 1 mm |
0.89 kg / 1.96 lbs
1 696 Gs
|
0.13 kg / 0.29 lbs
133 g / 1.3 N
|
0.80 kg / 1.76 lbs
~0 Gs
|
| 2 mm |
0.81 kg / 1.79 lbs
1 623 Gs
|
0.12 kg / 0.27 lbs
122 g / 1.2 N
|
0.73 kg / 1.61 lbs
~0 Gs
|
| 3 mm |
0.72 kg / 1.59 lbs
1 530 Gs
|
0.11 kg / 0.24 lbs
108 g / 1.1 N
|
0.65 kg / 1.43 lbs
~0 Gs
|
| 5 mm |
0.53 kg / 1.18 lbs
1 316 Gs
|
0.08 kg / 0.18 lbs
80 g / 0.8 N
|
0.48 kg / 1.06 lbs
~0 Gs
|
| 10 mm |
0.21 kg / 0.45 lbs
818 Gs
|
0.03 kg / 0.07 lbs
31 g / 0.3 N
|
0.19 kg / 0.41 lbs
~0 Gs
|
| 20 mm |
0.03 kg / 0.07 lbs
313 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
40 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 20x10x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x10x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.88 km/h
(5.52 m/s)
|
0.02 J | |
| 30 mm |
33.76 km/h
(9.38 m/s)
|
0.07 J | |
| 50 mm |
43.57 km/h
(12.10 m/s)
|
0.11 J | |
| 100 mm |
61.62 km/h
(17.12 m/s)
|
0.22 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x10x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 20x10x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 173 Mx | 21.7 µWb |
| Współczynnik Pc | 0.10 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 20x10x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.56 kg | Standard |
| Woda (dno rzeki) |
0.64 kg
(+0.08 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.10
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- z płaszczyzną wolną od rys
- przy bezpośrednim styku (brak farby)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Determinanty praktycznego udźwigu magnesu
- Odstęp (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Ochrona dłoni
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Uwaga medyczna
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować działanie implantu.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Kruchy spiek
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Uszkodzenia czujników
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Niklowa powłoka a alergia
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Nie lekceważ mocy
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
