MPL 20x10x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020126
GTIN: 5906301811329
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
1.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.56 kg / 5.46 N
Indukcja magnetyczna
87.15 mT / 871 Gs
Powłoka
[NiCuNi] nikiel
0.996 ZŁ z VAT / szt. + cena za transport
0.810 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń i zapytaj
+48 888 99 98 98
albo napisz za pomocą
formularz zgłoszeniowy
na naszej stronie.
Właściwości a także kształt elementów magnetycznych zweryfikujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
MPL 20x10x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 20x10x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020126 |
| GTIN | 5906301811329 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 1.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.56 kg / 5.46 N |
| Indukcja magnetyczna ~ ? | 87.15 mT / 871 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione wartości stanowią wynik symulacji inżynierskiej. Wyniki oparte są na modelach dla materiału NdFeB. Realne osiągi mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
MPL 20x10x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
871 Gs
87.1 mT
|
0.56 kg / 560.0 g
5.5 N
|
niskie ryzyko |
| 1 mm |
811 Gs
81.1 mT
|
0.49 kg / 485.7 g
4.8 N
|
niskie ryzyko |
| 2 mm |
713 Gs
71.3 mT
|
0.37 kg / 374.9 g
3.7 N
|
niskie ryzyko |
| 3 mm |
603 Gs
60.3 mT
|
0.27 kg / 267.9 g
2.6 N
|
niskie ryzyko |
| 5 mm |
409 Gs
40.9 mT
|
0.12 kg / 123.4 g
1.2 N
|
niskie ryzyko |
| 10 mm |
157 Gs
15.7 mT
|
0.02 kg / 18.1 g
0.2 N
|
niskie ryzyko |
| 15 mm |
69 Gs
6.9 mT
|
0.00 kg / 3.5 g
0.0 N
|
niskie ryzyko |
| 20 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.9 g
0.0 N
|
niskie ryzyko |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 20x10x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.11 kg / 112.0 g
1.1 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 98.0 g
1.0 N
|
| 2 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 20x10x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 168.0 g
1.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.11 kg / 112.0 g
1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 56.0 g
0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.28 kg / 280.0 g
2.7 N
|
MPL 20x10x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 56.0 g
0.5 N
|
| 1 mm |
|
0.14 kg / 140.0 g
1.4 N
|
| 2 mm |
|
0.28 kg / 280.0 g
2.7 N
|
| 5 mm |
|
0.56 kg / 560.0 g
5.5 N
|
| 10 mm |
|
0.56 kg / 560.0 g
5.5 N
|
MPL 20x10x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.56 kg / 560.0 g
5.5 N
|
OK |
| 40 °C | -2.2% |
0.55 kg / 547.7 g
5.4 N
|
OK |
| 60 °C | -4.4% |
0.54 kg / 535.4 g
5.3 N
|
|
| 80 °C | -6.6% |
0.52 kg / 523.0 g
5.1 N
|
|
| 100 °C | -28.8% |
0.40 kg / 398.7 g
3.9 N
|
MPL 20x10x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
28.31 kg / 28313 g
277.8 N
12 391 Gs
|
N/A |
| 1 mm |
0.49 kg / 486 g
4.8 N
1 696 Gs
|
0.44 kg / 437 g
4.3 N
~0 Gs
|
| 2 mm |
0.37 kg / 375 g
3.7 N
1 623 Gs
|
0.34 kg / 337 g
3.3 N
~0 Gs
|
| 3 mm |
0.27 kg / 268 g
2.6 N
1 530 Gs
|
0.24 kg / 241 g
2.4 N
~0 Gs
|
| 5 mm |
0.12 kg / 123 g
1.2 N
1 316 Gs
|
0.11 kg / 111 g
1.1 N
~0 Gs
|
| 10 mm |
0.02 kg / 18 g
0.2 N
818 Gs
|
0.02 kg / 16 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
313 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
40 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 20x10x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MPL 20x10x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.88 km/h
(5.52 m/s)
|
0.02 J | |
| 30 mm |
33.76 km/h
(9.38 m/s)
|
0.07 J | |
| 50 mm |
43.57 km/h
(12.10 m/s)
|
0.11 J | |
| 100 mm |
61.62 km/h
(17.12 m/s)
|
0.22 J |
MPL 20x10x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 20x10x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 173 Mx | 21.7 µWb |
| Współczynnik Pc | 0.10 | Niski (Płaski) |
MPL 20x10x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.56 kg | Standard |
| Woda (dno rzeki) |
0.64 kg
(+0.08 kg Zysk z wyporności)
|
+14.5% |
Inne oferty
Wady oraz zalety magnesów neodymowych NdFeB.
Należy pamiętać, iż obok ekstremalnej mocy, produkty te wyróżniają się następującymi plusami:
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Siła trzymania 0.56 kg jest wynikiem testu laboratoryjnego przeprowadzonego w warunkach wzorcowych:
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
W praktyce, rzeczywisty udźwig zależy od wielu zmiennych, wymienionych od kluczowych:
- Dystans (między magnesem a metalem), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – za chuda stal nie przyjmuje całego pola, przez co część strumienia marnuje się w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Unikaj kontaktu w przypadku alergii
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Łatwopalność
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Maksymalna temperatura
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Siła zgniatająca
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
Nie dawać dzieciom
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Nie zbliżaj do komputera
Nie przykładaj magnesów do portfela, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Ostrzeżenie!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
