MPL 15x2x30 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020121
GTIN/EAN: 5906301811275
Długość
15 mm [±0,1 mm]
Szerokość
2 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
6.75 g
Kierunek magnesowania
→ diametralny
Udźwig
0.68 kg / 6.68 N
Indukcja magnetyczna
614.34 mT / 6143 Gs
Powłoka
[NiCuNi] nikiel
4.75 ZŁ z VAT / szt. + cena za transport
3.86 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 22 499 98 98
lub napisz poprzez
formularz
na stronie kontaktowej.
Właściwości a także budowę magnesu zweryfikujesz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 15x2x30 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 15x2x30 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020121 |
| GTIN/EAN | 5906301811275 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 2 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 6.75 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 0.68 kg / 6.68 N |
| Indukcja magnetyczna ~ ? | 614.34 mT / 6143 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - parametry techniczne
Niniejsze informacje stanowią bezpośredni efekt symulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MPL 15x2x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6128 Gs
612.8 mT
|
0.68 kg / 680.0 g
6.7 N
|
niskie ryzyko |
| 1 mm |
3036 Gs
303.6 mT
|
0.17 kg / 166.8 g
1.6 N
|
niskie ryzyko |
| 2 mm |
1736 Gs
173.6 mT
|
0.05 kg / 54.5 g
0.5 N
|
niskie ryzyko |
| 3 mm |
1150 Gs
115.0 mT
|
0.02 kg / 23.9 g
0.2 N
|
niskie ryzyko |
| 5 mm |
623 Gs
62.3 mT
|
0.01 kg / 7.0 g
0.1 N
|
niskie ryzyko |
| 10 mm |
218 Gs
21.8 mT
|
0.00 kg / 0.9 g
0.0 N
|
niskie ryzyko |
| 15 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 20 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 15x2x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 136.0 g
1.3 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 15x2x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.20 kg / 204.0 g
2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 136.0 g
1.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 68.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.34 kg / 340.0 g
3.3 N
|
MPL 15x2x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 68.0 g
0.7 N
|
| 1 mm |
|
0.17 kg / 170.0 g
1.7 N
|
| 2 mm |
|
0.34 kg / 340.0 g
3.3 N
|
| 5 mm |
|
0.68 kg / 680.0 g
6.7 N
|
| 10 mm |
|
0.68 kg / 680.0 g
6.7 N
|
MPL 15x2x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.68 kg / 680.0 g
6.7 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 665.0 g
6.5 N
|
OK |
| 60 °C | -4.4% |
0.65 kg / 650.1 g
6.4 N
|
OK |
| 80 °C | -6.6% |
0.64 kg / 635.1 g
6.2 N
|
|
| 100 °C | -28.8% |
0.48 kg / 484.2 g
4.7 N
|
MPL 15x2x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.95 kg / 6946 g
68.1 N
6 152 Gs
|
N/A |
| 1 mm |
3.45 kg / 3454 g
33.9 N
8 643 Gs
|
3.11 kg / 3109 g
30.5 N
~0 Gs
|
| 2 mm |
1.70 kg / 1704 g
16.7 N
6 071 Gs
|
1.53 kg / 1534 g
15.0 N
~0 Gs
|
| 3 mm |
0.93 kg / 929 g
9.1 N
4 482 Gs
|
0.84 kg / 836 g
8.2 N
~0 Gs
|
| 5 mm |
0.36 kg / 359 g
3.5 N
2 788 Gs
|
0.32 kg / 323 g
3.2 N
~0 Gs
|
| 10 mm |
0.07 kg / 72 g
0.7 N
1 247 Gs
|
0.06 kg / 65 g
0.6 N
~0 Gs
|
| 20 mm |
0.01 kg / 9 g
0.1 N
435 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
71 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 15x2x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 15x2x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.13 km/h
(2.81 m/s)
|
0.03 J | |
| 30 mm |
17.53 km/h
(4.87 m/s)
|
0.08 J | |
| 50 mm |
22.63 km/h
(6.29 m/s)
|
0.13 J | |
| 100 mm |
32.01 km/h
(8.89 m/s)
|
0.27 J |
MPL 15x2x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 15x2x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 210 Mx | 22.1 µWb |
| Współczynnik Pc | 1.54 | Wysoki (Stabilny) |
MPL 15x2x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.68 kg | Standard |
| Woda (dno rzeki) |
0.78 kg
(+0.10 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.54
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) zyskują estetyczny, błyszczący wygląd.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z zastosowaniem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (brak zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje udźwig.
Niebezpieczeństwo przytrzaśnięcia
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Dla uczulonych
Część populacji wykazuje uczulenie na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może powodować silną reakcję alergiczną. Wskazane jest używanie rękawiczek ochronnych.
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Chronić przed dziećmi
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Zagrożenie zapłonem
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Rozprysk materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
