MPL 15x10x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020388
GTIN: 5906301811879
Długość
15 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.57 kg / 15.45 N
Indukcja magnetyczna
180.53 mT / 1805 Gs
Powłoka
[NiCuNi] nikiel
1.316 ZŁ z VAT / szt. + cena za transport
1.070 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz za pomocą
formularz
w sekcji kontakt.
Właściwości i formę magnesów zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 15x10x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 15x10x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020388 |
| GTIN | 5906301811879 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.57 kg / 15.45 N |
| Indukcja magnetyczna ~ ? | 180.53 mT / 1805 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Niniejsze dane stanowią rezultat symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy NdFeB. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MPL 15x10x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1805 Gs
180.5 mT
|
1.57 kg / 1570.0 g
15.4 N
|
słaby uchwyt |
| 1 mm |
1628 Gs
162.8 mT
|
1.28 kg / 1278.3 g
12.5 N
|
słaby uchwyt |
| 2 mm |
1394 Gs
139.4 mT
|
0.94 kg / 936.3 g
9.2 N
|
słaby uchwyt |
| 3 mm |
1152 Gs
115.2 mT
|
0.64 kg / 639.9 g
6.3 N
|
słaby uchwyt |
| 5 mm |
751 Gs
75.1 mT
|
0.27 kg / 271.5 g
2.7 N
|
słaby uchwyt |
| 10 mm |
262 Gs
26.2 mT
|
0.03 kg / 33.1 g
0.3 N
|
słaby uchwyt |
| 15 mm |
110 Gs
11.0 mT
|
0.01 kg / 5.8 g
0.1 N
|
słaby uchwyt |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 1.4 g
0.0 N
|
słaby uchwyt |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MPL 15x10x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.31 kg / 314.0 g
3.1 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 256.0 g
2.5 N
|
| 2 mm | Stal (~0.2) |
0.19 kg / 188.0 g
1.8 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 128.0 g
1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 15x10x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.47 kg / 471.0 g
4.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.31 kg / 314.0 g
3.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 157.0 g
1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.79 kg / 785.0 g
7.7 N
|
MPL 15x10x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 157.0 g
1.5 N
|
| 1 mm |
|
0.39 kg / 392.5 g
3.9 N
|
| 2 mm |
|
0.79 kg / 785.0 g
7.7 N
|
| 5 mm |
|
1.57 kg / 1570.0 g
15.4 N
|
| 10 mm |
|
1.57 kg / 1570.0 g
15.4 N
|
MPL 15x10x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.57 kg / 1570.0 g
15.4 N
|
OK |
| 40 °C | -2.2% |
1.54 kg / 1535.5 g
15.1 N
|
OK |
| 60 °C | -4.4% |
1.50 kg / 1500.9 g
14.7 N
|
|
| 80 °C | -6.6% |
1.47 kg / 1466.4 g
14.4 N
|
|
| 100 °C | -28.8% |
1.12 kg / 1117.8 g
11.0 N
|
MPL 15x10x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.01 kg / 3012 g
29.5 N
3 196 Gs
|
N/A |
| 1 mm |
2.76 kg / 2761 g
27.1 N
3 456 Gs
|
2.49 kg / 2485 g
24.4 N
~0 Gs
|
| 2 mm |
2.45 kg / 2452 g
24.1 N
3 257 Gs
|
2.21 kg / 2207 g
21.7 N
~0 Gs
|
| 3 mm |
2.12 kg / 2122 g
20.8 N
3 029 Gs
|
1.91 kg / 1910 g
18.7 N
~0 Gs
|
| 5 mm |
1.49 kg / 1495 g
14.7 N
2 543 Gs
|
1.35 kg / 1345 g
13.2 N
~0 Gs
|
| 10 mm |
0.52 kg / 521 g
5.1 N
1 501 Gs
|
0.47 kg / 469 g
4.6 N
~0 Gs
|
| 20 mm |
0.06 kg / 63 g
0.6 N
524 Gs
|
0.06 kg / 57 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
60 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 15x10x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 15x10x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.99 km/h
(7.50 m/s)
|
0.06 J | |
| 30 mm |
46.15 km/h
(12.82 m/s)
|
0.18 J | |
| 50 mm |
59.57 km/h
(16.55 m/s)
|
0.31 J | |
| 100 mm |
84.24 km/h
(23.40 m/s)
|
0.62 J |
MPL 15x10x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 15x10x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 194 Mx | 31.9 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
MPL 15x10x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.57 kg | Standard |
| Woda (dno rzeki) |
1.80 kg
(+0.23 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne produkty
Zalety i wady magnesów neodymowych NdFeB.
Magnesy neodymowe to nie tylko moc przyciągania, ale także inne istotne właściwości, w tym::
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
Podany w tabeli udźwig jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
Na skuteczność trzymania wpływają parametry środowiska pracy, takie jak (od najważniejszych):
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Udźwig mierzono używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Zalety i wady magnesów neodymowych NdFeB.
Magnesy neodymowe to nie tylko moc przyciągania, ale także inne istotne właściwości, w tym::
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
Podany w tabeli udźwig jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
Na skuteczność trzymania wpływają parametry środowiska pracy, takie jak (od najważniejszych):
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Udźwig mierzono używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża nośność.
BHP przy magnesach
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Uszkodzenia ciała
Silne magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Reakcje alergiczne
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Nośniki danych
Potężne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ostrożność wymagana
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Zagrożenie!
Dowiedz się więcej o ryzyku w artykule: Bezpieczeństwo pracy z magnesami.
