Neodymy – szeroki wybór kształtów

Potrzebujesz niezawodnego pola magnetycznego? Oferujemy szeroki wybór magnesów o różnych kształtach i wymiarach. Są one idealne do użytku w domu, warsztatu oraz modelarstwa. Sprawdź naszą ofertę dostępne od ręki.

sprawdź pełną ofertę

Zestawy do magnet fishing (hobbystów)

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w rzekach i jeziorach.

znajdź sprzęt do poszukiwań

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (M8, M10, M12) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy instalacji oświetlenia, czujników oraz banerów.

zobacz zastosowania przemysłowe

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 15x10x2 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020388

GTIN/EAN: 5906301811879

5.00

Długość

15 mm [±0,1 mm]

Szerokość

10 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

2.25 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.57 kg / 15.45 N

Indukcja magnetyczna

180.53 mT / 1805 Gs

Powłoka

[NiCuNi] nikiel

1.316 z VAT / szt. + cena za transport

1.070 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1.070 ZŁ
1.316 ZŁ
cena od 600 szt.
1.006 ZŁ
1.237 ZŁ
cena od 2350 szt.
0.942 ZŁ
1.158 ZŁ
Szukasz zniżki?

Zadzwoń do nas +48 888 99 98 98 lub skontaktuj się za pomocą formularz na stronie kontakt.
Siłę i budowę elementów magnetycznych sprawdzisz w naszym naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Specyfikacja techniczna - MPL 15x10x2 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 15x10x2 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020388
GTIN/EAN 5906301811879
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 15 mm [±0,1 mm]
Szerokość 10 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 2.25 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.57 kg / 15.45 N
Indukcja magnetyczna ~ ? 180.53 mT / 1805 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 15x10x2 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu - dane

Przedstawione dane stanowią wynik analizy matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 15x10x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1805 Gs
180.5 mT
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
bezpieczny
1 mm 1628 Gs
162.8 mT
1.28 kg / 2.82 lbs
1278.3 g / 12.5 N
bezpieczny
2 mm 1394 Gs
139.4 mT
0.94 kg / 2.06 lbs
936.3 g / 9.2 N
bezpieczny
3 mm 1152 Gs
115.2 mT
0.64 kg / 1.41 lbs
639.9 g / 6.3 N
bezpieczny
5 mm 751 Gs
75.1 mT
0.27 kg / 0.60 lbs
271.5 g / 2.7 N
bezpieczny
10 mm 262 Gs
26.2 mT
0.03 kg / 0.07 lbs
33.1 g / 0.3 N
bezpieczny
15 mm 110 Gs
11.0 mT
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
bezpieczny
20 mm 54 Gs
5.4 mT
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
bezpieczny
30 mm 18 Gs
1.8 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
bezpieczny
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa obsunięcia (pion)
MPL 15x10x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.31 kg / 0.69 lbs
314.0 g / 3.1 N
1 mm Stal (~0.2) 0.26 kg / 0.56 lbs
256.0 g / 2.5 N
2 mm Stal (~0.2) 0.19 kg / 0.41 lbs
188.0 g / 1.8 N
3 mm Stal (~0.2) 0.13 kg / 0.28 lbs
128.0 g / 1.3 N
5 mm Stal (~0.2) 0.05 kg / 0.12 lbs
54.0 g / 0.5 N
10 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 15x10x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.47 kg / 1.04 lbs
471.0 g / 4.6 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.79 kg / 1.73 lbs
785.0 g / 7.7 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 15x10x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
1 mm
25%
0.39 kg / 0.87 lbs
392.5 g / 3.9 N
2 mm
50%
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
3 mm
75%
1.18 kg / 2.60 lbs
1177.5 g / 11.6 N
5 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
10 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
11 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
12 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 15x10x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
OK
40 °C -2.2% 1.54 kg / 3.39 lbs
1535.5 g / 15.1 N
OK
60 °C -4.4% 1.50 kg / 3.31 lbs
1500.9 g / 14.7 N
80 °C -6.6% 1.47 kg / 3.23 lbs
1466.4 g / 14.4 N
100 °C -28.8% 1.12 kg / 2.46 lbs
1117.8 g / 11.0 N

Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 15x10x2 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 3.01 kg / 6.64 lbs
3 196 Gs
0.45 kg / 1.00 lbs
452 g / 4.4 N
N/A
1 mm 2.76 kg / 6.09 lbs
3 456 Gs
0.41 kg / 0.91 lbs
414 g / 4.1 N
2.49 kg / 5.48 lbs
~0 Gs
2 mm 2.45 kg / 5.41 lbs
3 257 Gs
0.37 kg / 0.81 lbs
368 g / 3.6 N
2.21 kg / 4.87 lbs
~0 Gs
3 mm 2.12 kg / 4.68 lbs
3 029 Gs
0.32 kg / 0.70 lbs
318 g / 3.1 N
1.91 kg / 4.21 lbs
~0 Gs
5 mm 1.49 kg / 3.30 lbs
2 543 Gs
0.22 kg / 0.49 lbs
224 g / 2.2 N
1.35 kg / 2.97 lbs
~0 Gs
10 mm 0.52 kg / 1.15 lbs
1 501 Gs
0.08 kg / 0.17 lbs
78 g / 0.8 N
0.47 kg / 1.03 lbs
~0 Gs
20 mm 0.06 kg / 0.14 lbs
524 Gs
0.01 kg / 0.02 lbs
10 g / 0.1 N
0.06 kg / 0.13 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
60 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
37 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
24 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
9 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 15x10x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 5.0 cm
Implant słuchowy 10 Gs (1.0 mT) 4.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Immobilizer 50 Gs (5.0 mT) 2.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 15x10x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 26.99 km/h
(7.50 m/s)
0.06 J
30 mm 46.15 km/h
(12.82 m/s)
0.18 J
50 mm 59.57 km/h
(16.55 m/s)
0.31 J
100 mm 84.24 km/h
(23.40 m/s)
0.62 J

Tabela 9: Specyfikacja ochrony powierzchni
MPL 15x10x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MPL 15x10x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 3 194 Mx 31.9 µWb
Współczynnik Pc 0.22 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MPL 15x10x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.57 kg Standard
Woda (dno rzeki) 1.80 kg
(+0.23 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.

3. Wytrzymałość temperaturowa

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020388-2026
Przelicznik magnesów
Siła oderwania

Indukcja magnetyczna

Zobacz też inne propozycje

Model MPL 15x10x2 / N38 cechuje się niskim profilem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Jako sztabka magnetyczna o dużej mocy (ok. 1.57 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 15x10x2 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji generatorów oraz systemów transportu bliskiego. Dzięki płaskiej powierzchni i dużej sile (ok. 1.57 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Klienci często wybierają ten model do wieszania narzędzi na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (15x10 mm), co jest idealne do montażu na płasko. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: 15 mm (długość), 10 mm (szerokość) i 2 mm (grubość). Kluczowym parametrem jest tutaj udźwig wynoszący około 1.57 kg (siła ~15.45 N), co przy tak płaskim kształcie świadczy o dużej mocy materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety i wady magnesów neodymowych Nd2Fe14B.

Plusy

Należy pamiętać, iż obok wysokiej mocy, produkty te cechują się następującymi plusami:
  • Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (teoretycznie).
  • Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
  • Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
  • Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.

Minusy

Mimo zalet, posiadają też wady:
  • Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.

Charakterystyka udźwigu

Najlepsza nośność magnesu w idealnych parametrachco ma na to wpływ?

Siła oderwania została wyznaczona dla warunków idealnego styku, obejmującej:
  • z użyciem blachy ze miękkiej stali, która służy jako zwora magnetyczna
  • której wymiar poprzeczny wynosi ok. 10 mm
  • o szlifowanej powierzchni styku
  • bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
  • podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
  • przy temperaturze pokojowej

Determinanty praktycznego udźwigu magnesu

Na realną siłę oddziałują parametry środowiska pracy, głównie (od priorytetowych):
  • Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
  • Grubość blachy – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
  • Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i udźwig.
  • Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
  • Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.

Udźwig wyznaczano stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża nośność.

Bezpieczna praca z magnesami neodymowymi
Rozprysk materiału

Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.

Siła zgniatająca

Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy wkładaj dłoni między dwa przyciągające się elementy.

Ryzyko połknięcia

Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.

Nie wierć w magnesach

Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.

Wpływ na smartfony

Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.

Niklowa powłoka a alergia

Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.

Temperatura pracy

Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.

Ochrona urządzeń

Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.

Siła neodymu

Używaj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.

Implanty kardiologiczne

Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie implantu.

Bezpieczeństwo! Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98