MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020117
GTIN/EAN: 5906301811237
Długość
12.5 mm [±0,1 mm]
Szerokość
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.86 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.84 kg / 47.51 N
Indukcja magnetyczna
360.91 mT / 3609 Gs
Powłoka
[NiCuNi] nikiel
2.83 ZŁ z VAT / szt. + cena za transport
2.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie skontaktuj się za pomocą
formularz zapytania
w sekcji kontakt.
Udźwig a także budowę magnesu neodymowego zobaczysz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020117 |
| GTIN/EAN | 5906301811237 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 12.5 mm [±0,1 mm] |
| Szerokość | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.86 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.84 kg / 47.51 N |
| Indukcja magnetyczna ~ ? | 360.91 mT / 3609 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Poniższe dane stanowią rezultat kalkulacji matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MPL 12.5x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3608 Gs
360.8 mT
|
4.84 kg / 10.67 lbs
4840.0 g / 47.5 N
|
uwaga |
| 1 mm |
3156 Gs
315.6 mT
|
3.70 kg / 8.17 lbs
3704.2 g / 36.3 N
|
uwaga |
| 2 mm |
2671 Gs
267.1 mT
|
2.65 kg / 5.85 lbs
2653.8 g / 26.0 N
|
uwaga |
| 3 mm |
2211 Gs
221.1 mT
|
1.82 kg / 4.01 lbs
1817.7 g / 17.8 N
|
niskie ryzyko |
| 5 mm |
1464 Gs
146.4 mT
|
0.80 kg / 1.76 lbs
797.6 g / 7.8 N
|
niskie ryzyko |
| 10 mm |
538 Gs
53.8 mT
|
0.11 kg / 0.24 lbs
107.6 g / 1.1 N
|
niskie ryzyko |
| 15 mm |
234 Gs
23.4 mT
|
0.02 kg / 0.05 lbs
20.4 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
119 Gs
11.9 mT
|
0.01 kg / 0.01 lbs
5.3 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 12.5x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
968.0 g / 9.5 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
| 2 mm | Stal (~0.2) |
0.53 kg / 1.17 lbs
530.0 g / 5.2 N
|
| 3 mm | Stal (~0.2) |
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| 5 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 12.5x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.45 kg / 3.20 lbs
1452.0 g / 14.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.97 kg / 2.13 lbs
968.0 g / 9.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 1.07 lbs
484.0 g / 4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.42 kg / 5.34 lbs
2420.0 g / 23.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 12.5x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 1.07 lbs
484.0 g / 4.7 N
|
| 1 mm |
|
1.21 kg / 2.67 lbs
1210.0 g / 11.9 N
|
| 2 mm |
|
2.42 kg / 5.34 lbs
2420.0 g / 23.7 N
|
| 3 mm |
|
3.63 kg / 8.00 lbs
3630.0 g / 35.6 N
|
| 5 mm |
|
4.84 kg / 10.67 lbs
4840.0 g / 47.5 N
|
| 10 mm |
|
4.84 kg / 10.67 lbs
4840.0 g / 47.5 N
|
| 11 mm |
|
4.84 kg / 10.67 lbs
4840.0 g / 47.5 N
|
| 12 mm |
|
4.84 kg / 10.67 lbs
4840.0 g / 47.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 12.5x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.84 kg / 10.67 lbs
4840.0 g / 47.5 N
|
OK |
| 40 °C | -2.2% |
4.73 kg / 10.44 lbs
4733.5 g / 46.4 N
|
OK |
| 60 °C | -4.4% |
4.63 kg / 10.20 lbs
4627.0 g / 45.4 N
|
|
| 80 °C | -6.6% |
4.52 kg / 9.97 lbs
4520.6 g / 44.3 N
|
|
| 100 °C | -28.8% |
3.45 kg / 7.60 lbs
3446.1 g / 33.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 12.5x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.54 kg / 27.64 lbs
5 069 Gs
|
1.88 kg / 4.15 lbs
1880 g / 18.4 N
|
N/A |
| 1 mm |
11.08 kg / 24.43 lbs
6 783 Gs
|
1.66 kg / 3.66 lbs
1662 g / 16.3 N
|
9.97 kg / 21.98 lbs
~0 Gs
|
| 2 mm |
9.59 kg / 21.15 lbs
6 312 Gs
|
1.44 kg / 3.17 lbs
1439 g / 14.1 N
|
8.63 kg / 19.04 lbs
~0 Gs
|
| 3 mm |
8.18 kg / 18.03 lbs
5 827 Gs
|
1.23 kg / 2.70 lbs
1226 g / 12.0 N
|
7.36 kg / 16.22 lbs
~0 Gs
|
| 5 mm |
5.71 kg / 12.60 lbs
4 871 Gs
|
0.86 kg / 1.89 lbs
857 g / 8.4 N
|
5.14 kg / 11.34 lbs
~0 Gs
|
| 10 mm |
2.07 kg / 4.55 lbs
2 929 Gs
|
0.31 kg / 0.68 lbs
310 g / 3.0 N
|
1.86 kg / 4.10 lbs
~0 Gs
|
| 20 mm |
0.28 kg / 0.61 lbs
1 076 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
136 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 12.5x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 12.5x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.38 km/h
(8.16 m/s)
|
0.20 J | |
| 30 mm |
50.21 km/h
(13.95 m/s)
|
0.57 J | |
| 50 mm |
64.81 km/h
(18.00 m/s)
|
0.95 J | |
| 100 mm |
91.65 km/h
(25.46 m/s)
|
1.90 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 12.5x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 12.5x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 874 Mx | 58.7 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 12.5x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.84 kg | Standard |
| Woda (dno rzeki) |
5.54 kg
(+0.70 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z zastosowaniem płyty ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans – występowanie jakiejkolwiek warstwy (farba, taśma, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z impetem, często szybciej niż zdążysz zareagować.
Implanty medyczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Nadwrażliwość na metale
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować silną reakcję alergiczną. Rekomendujemy stosowanie rękawiczek ochronnych.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
