Potężne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Są one idealne do użytku w domu, warsztatu oraz modelarstwa. Zobacz produkty dostępne od ręki.

poznaj cennik i wymiary

Magnet fishing: mocne zestawy F200/F400

Zacznij swoje hobby polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

znajdź zestaw dla siebie

Uchwyty magnetyczne montażowe

Niezawodne rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy mocowaniu oświetlenia, czujników oraz reklam.

zobacz zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, wyślemy dziś!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 10x7x3 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020115

GTIN/EAN: 5906301811213

5.00

Długość

10 mm [±0,1 mm]

Szerokość

7 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

1.58 g

Kierunek magnesowania

↑ osiowy

Udźwig

2.02 kg / 19.82 N

Indukcja magnetyczna

339.79 mT / 3398 Gs

Powłoka

[NiCuNi] nikiel

0.849 z VAT / szt. + cena za transport

0.690 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.690 ZŁ
0.849 ZŁ
cena od 900 szt.
0.649 ZŁ
0.798 ZŁ
cena od 3700 szt.
0.607 ZŁ
0.747 ZŁ
Nie wiesz co wybrać?

Dzwoń do nas +48 888 99 98 98 albo skontaktuj się za pomocą formularz zapytania na stronie kontakt.
Moc i kształt magnesu neodymowego obliczysz u nas w kalkulatorze mocy.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

MPL 10x7x3 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka MPL 10x7x3 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020115
GTIN/EAN 5906301811213
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 10 mm [±0,1 mm]
Szerokość 7 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 1.58 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 2.02 kg / 19.82 N
Indukcja magnetyczna ~ ? 339.79 mT / 3398 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 10x7x3 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - parametry techniczne

Niniejsze dane są wynik kalkulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 10x7x3 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 3396 Gs
339.6 mT
2.02 kg / 2020.0 g
19.8 N
średnie ryzyko
1 mm 2727 Gs
272.7 mT
1.30 kg / 1303.2 g
12.8 N
niskie ryzyko
2 mm 2053 Gs
205.3 mT
0.74 kg / 738.2 g
7.2 N
niskie ryzyko
3 mm 1502 Gs
150.2 mT
0.40 kg / 395.2 g
3.9 N
niskie ryzyko
5 mm 803 Gs
80.3 mT
0.11 kg / 113.0 g
1.1 N
niskie ryzyko
10 mm 216 Gs
21.6 mT
0.01 kg / 8.2 g
0.1 N
niskie ryzyko
15 mm 82 Gs
8.2 mT
0.00 kg / 1.2 g
0.0 N
niskie ryzyko
20 mm 39 Gs
3.9 mT
0.00 kg / 0.3 g
0.0 N
niskie ryzyko
30 mm 13 Gs
1.3 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
50 mm 3 Gs
0.3 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 10x7x3 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.40 kg / 404.0 g
4.0 N
1 mm Stal (~0.2) 0.26 kg / 260.0 g
2.6 N
2 mm Stal (~0.2) 0.15 kg / 148.0 g
1.5 N
3 mm Stal (~0.2) 0.08 kg / 80.0 g
0.8 N
5 mm Stal (~0.2) 0.02 kg / 22.0 g
0.2 N
10 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 10x7x3 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.61 kg / 606.0 g
5.9 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.40 kg / 404.0 g
4.0 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.20 kg / 202.0 g
2.0 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.01 kg / 1010.0 g
9.9 N
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 10x7x3 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.20 kg / 202.0 g
2.0 N
1 mm
25%
0.51 kg / 505.0 g
5.0 N
2 mm
50%
1.01 kg / 1010.0 g
9.9 N
5 mm
100%
2.02 kg / 2020.0 g
19.8 N
10 mm
100%
2.02 kg / 2020.0 g
19.8 N
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 10x7x3 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 2.02 kg / 2020.0 g
19.8 N
OK
40 °C -2.2% 1.98 kg / 1975.6 g
19.4 N
OK
60 °C -4.4% 1.93 kg / 1931.1 g
18.9 N
80 °C -6.6% 1.89 kg / 1886.7 g
18.5 N
100 °C -28.8% 1.44 kg / 1438.2 g
14.1 N
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 10x7x3 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 4.98 kg / 4976 g
48.8 N
4 893 Gs
N/A
1 mm 4.09 kg / 4088 g
40.1 N
6 155 Gs
3.68 kg / 3679 g
36.1 N
~0 Gs
2 mm 3.21 kg / 3210 g
31.5 N
5 455 Gs
2.89 kg / 2889 g
28.3 N
~0 Gs
3 mm 2.44 kg / 2443 g
24.0 N
4 758 Gs
2.20 kg / 2199 g
21.6 N
~0 Gs
5 mm 1.34 kg / 1335 g
13.1 N
3 518 Gs
1.20 kg / 1202 g
11.8 N
~0 Gs
10 mm 0.28 kg / 278 g
2.7 N
1 606 Gs
0.25 kg / 250 g
2.5 N
~0 Gs
20 mm 0.02 kg / 20 g
0.2 N
433 Gs
0.02 kg / 18 g
0.2 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
43 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 10x7x3 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Czasomierz 20 Gs (2.0 mT) 3.0 cm
Urządzenie mobilne 40 Gs (4.0 mT) 2.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 10x7x3 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 36.15 km/h
(10.04 m/s)
0.08 J
30 mm 62.46 km/h
(17.35 m/s)
0.24 J
50 mm 80.63 km/h
(22.40 m/s)
0.40 J
100 mm 114.03 km/h
(31.68 m/s)
0.79 J
Tabela 9: Specyfikacja ochrony powierzchni
MPL 10x7x3 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Tabela 10: Dane konstrukcyjne (Flux)
MPL 10x7x3 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 480 Mx 24.8 µWb
Współczynnik Pc 0.42 Niski (Płaski)
Tabela 11: Hydrostatyka i wyporność
MPL 10x7x3 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 2.02 kg Standard
Woda (dno rzeki) 2.31 kg
(+0.29 kg Zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły prostopadłej.

2. Grubość podłoża

*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020115-2025
Szybki konwerter jednostek
Udźwig magnesu

Pole magnetyczne

Sprawdź inne oferty

Produkt ten to bardzo silny magnes w kształcie płytki wykonany z materiału NdFeB, co przy wymiarach 10x7x3 mm i wadze 1.58 g gwarantuje najwyższą jakość połączenia. Jako magnes blokowy o dużej mocy (ok. 2.02 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 10x7x3 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Magnesy płytkowe MPL 10x7x3 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak filtry wyłapujące opiłki oraz silniki liniowe. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 10x7x3 / N38 najlepiej używać mocne kleje epoksydowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Standardowo model MPL 10x7x3 / N38 jest magnesowany przez grubość (wymiar 3 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 10x7x3 mm, co przy wadze 1.58 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 2.02 kg (siła ~19.82 N), co przy tak płaskim kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady magnesów z neodymu Nd2Fe14B.

Plusy
Magnesy neodymowe to nie tylko moc przyciągania, ale także inne kluczowe cechy, w tym::
  • Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
  • Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
  • Dzięki powłoce (nikiel, Au, Ag) mają estetyczny, metaliczny wygląd.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
  • Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
Mimo zalet, posiadają też wady:
  • Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.

Charakterystyka udźwigu

Maksymalna moc trzymania magnesuco ma na to wpływ?
Siła oderwania została określona dla optymalnej konfiguracji, obejmującej:
  • na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
  • o grubości przynajmniej 10 mm
  • charakteryzującej się równą strukturą
  • przy zerowej szczelinie (bez powłok)
  • przy pionowym kierunku działania siły (kąt 90 stopni)
  • przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
W praktyce, faktyczna siła trzymania wynika z kilku kluczowych aspektów, wymienionych od najbardziej istotnych:
  • Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
  • Temperatura – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.

Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.

Instrukcja bezpiecznej obsługi magnesów
Obróbka mechaniczna

Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.

Nie zbliżaj do komputera

Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.

Niklowa powłoka a alergia

Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.

Limity termiczne

Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.

Potężne pole

Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.

Rozprysk materiału

Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.

Implanty medyczne

Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.

Urazy ciała

Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Ryzyko połknięcia

Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.

Trzymaj z dala od elektroniki

Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.

Bezpieczeństwo! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98