MPL 10x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020115
GTIN: 5906301811213
Długość
10 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.02 kg / 19.82 N
Indukcja magnetyczna
339.79 mT / 3398 Gs
Powłoka
[NiCuNi] nikiel
0.849 ZŁ z VAT / szt. + cena za transport
0.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz korzystając z
formularz
w sekcji kontakt.
Moc i kształt magnesu sprawdzisz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 10x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020115 |
| GTIN | 5906301811213 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.02 kg / 19.82 N |
| Indukcja magnetyczna ~ ? | 339.79 mT / 3398 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Niniejsze wartości są bezpośredni efekt analizy matematycznej. Wartości bazują na algorytmach dla klasy NdFeB. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
MPL 10x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3396 Gs
339.6 mT
|
2.02 kg / 2020.0 g
19.8 N
|
mocny |
| 1 mm |
2727 Gs
272.7 mT
|
1.30 kg / 1303.2 g
12.8 N
|
niskie ryzyko |
| 2 mm |
2053 Gs
205.3 mT
|
0.74 kg / 738.2 g
7.2 N
|
niskie ryzyko |
| 3 mm |
1502 Gs
150.2 mT
|
0.40 kg / 395.2 g
3.9 N
|
niskie ryzyko |
| 5 mm |
803 Gs
80.3 mT
|
0.11 kg / 113.0 g
1.1 N
|
niskie ryzyko |
| 10 mm |
216 Gs
21.6 mT
|
0.01 kg / 8.2 g
0.1 N
|
niskie ryzyko |
| 15 mm |
82 Gs
8.2 mT
|
0.00 kg / 1.2 g
0.0 N
|
niskie ryzyko |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 30 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 10x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.40 kg / 404.0 g
4.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 606.0 g
5.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.40 kg / 404.0 g
4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 202.0 g
2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.01 kg / 1010.0 g
9.9 N
|
MPL 10x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 202.0 g
2.0 N
|
| 1 mm |
|
0.51 kg / 505.0 g
5.0 N
|
| 2 mm |
|
1.01 kg / 1010.0 g
9.9 N
|
| 5 mm |
|
2.02 kg / 2020.0 g
19.8 N
|
| 10 mm |
|
2.02 kg / 2020.0 g
19.8 N
|
MPL 10x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.02 kg / 2020.0 g
19.8 N
|
OK |
| 40 °C | -2.2% |
1.98 kg / 1975.6 g
19.4 N
|
OK |
| 60 °C | -4.4% |
1.93 kg / 1931.1 g
18.9 N
|
|
| 80 °C | -6.6% |
1.89 kg / 1886.7 g
18.5 N
|
|
| 100 °C | -28.8% |
1.44 kg / 1438.2 g
14.1 N
|
MPL 10x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.98 kg / 4976 g
48.8 N
4 893 Gs
|
N/A |
| 1 mm |
4.09 kg / 4088 g
40.1 N
6 155 Gs
|
3.68 kg / 3679 g
36.1 N
~0 Gs
|
| 2 mm |
3.21 kg / 3210 g
31.5 N
5 455 Gs
|
2.89 kg / 2889 g
28.3 N
~0 Gs
|
| 3 mm |
2.44 kg / 2443 g
24.0 N
4 758 Gs
|
2.20 kg / 2199 g
21.6 N
~0 Gs
|
| 5 mm |
1.34 kg / 1335 g
13.1 N
3 518 Gs
|
1.20 kg / 1202 g
11.8 N
~0 Gs
|
| 10 mm |
0.28 kg / 278 g
2.7 N
1 606 Gs
|
0.25 kg / 250 g
2.5 N
~0 Gs
|
| 20 mm |
0.02 kg / 20 g
0.2 N
433 Gs
|
0.02 kg / 18 g
0.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
43 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
36.15 km/h
(10.04 m/s)
|
0.08 J | |
| 30 mm |
62.46 km/h
(17.35 m/s)
|
0.24 J | |
| 50 mm |
80.63 km/h
(22.40 m/s)
|
0.40 J | |
| 100 mm |
114.03 km/h
(31.68 m/s)
|
0.79 J |
MPL 10x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 480 Mx | 24.8 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
MPL 10x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.02 kg | Standard |
| Woda (dno rzeki) |
2.31 kg
(+0.29 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne produkty
Zalety i wady neodymowych magnesów NdFeB.
Poza potężną energią, magnesy typu NdFeB oferują wiele innych atutów::
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, Au, Ag) mają nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Optymalny udźwig magnesu neodymowego – od czego zależy?
Wartość udźwigu podana w specyfikacji reprezentuje maksymalnych osiągów, zarejestrowanej w warunkach laboratoryjnych, a mianowicie:
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość to min. 10 mm
- z powierzchnią wolną od rys
- w warunkach idealnego przylegania (metal do metalu)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Determinanty praktycznego udźwigu magnesu
W rzeczywistych zastosowaniach, faktyczna siła trzymania wynika z wielu zmiennych, wymienionych od najbardziej istotnych:
- Szczelina – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Implanty kardiologiczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca działanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Ryzyko pożaru
Pył generowany podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Bezpieczny dystans
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Ochrona dłoni
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Ryzyko uczulenia
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Ostrożność wymagana
Stosuj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Ważne!
Szukasz szczegółów? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
