MPL 10x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020115
GTIN/EAN: 5906301811213
Długość
10 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.02 kg / 19.82 N
Indukcja magnetyczna
339.79 mT / 3398 Gs
Powłoka
[NiCuNi] nikiel
0.849 ZŁ z VAT / szt. + cena za transport
0.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub zostaw wiadomość korzystając z
nasz formularz online
w sekcji kontakt.
Właściwości oraz formę magnesów skontrolujesz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja - MPL 10x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020115 |
| GTIN/EAN | 5906301811213 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.02 kg / 19.82 N |
| Indukcja magnetyczna ~ ? | 339.79 mT / 3398 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Przedstawione dane są rezultat kalkulacji inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MPL 10x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3396 Gs
339.6 mT
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
uwaga |
| 1 mm |
2727 Gs
272.7 mT
|
1.30 kg / 2.87 lbs
1303.2 g / 12.8 N
|
słaby uchwyt |
| 2 mm |
2053 Gs
205.3 mT
|
0.74 kg / 1.63 lbs
738.2 g / 7.2 N
|
słaby uchwyt |
| 3 mm |
1502 Gs
150.2 mT
|
0.40 kg / 0.87 lbs
395.2 g / 3.9 N
|
słaby uchwyt |
| 5 mm |
803 Gs
80.3 mT
|
0.11 kg / 0.25 lbs
113.0 g / 1.1 N
|
słaby uchwyt |
| 10 mm |
216 Gs
21.6 mT
|
0.01 kg / 0.02 lbs
8.2 g / 0.1 N
|
słaby uchwyt |
| 15 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 10x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 10x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 1.34 lbs
606.0 g / 5.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 0.45 lbs
202.0 g / 2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 10x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 0.45 lbs
202.0 g / 2.0 N
|
| 1 mm |
|
0.51 kg / 1.11 lbs
505.0 g / 5.0 N
|
| 2 mm |
|
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 3 mm |
|
1.52 kg / 3.34 lbs
1515.0 g / 14.9 N
|
| 5 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
| 10 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
| 11 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
| 12 mm |
|
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 10x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.02 kg / 4.45 lbs
2020.0 g / 19.8 N
|
OK |
| 40 °C | -2.2% |
1.98 kg / 4.36 lbs
1975.6 g / 19.4 N
|
OK |
| 60 °C | -4.4% |
1.93 kg / 4.26 lbs
1931.1 g / 18.9 N
|
|
| 80 °C | -6.6% |
1.89 kg / 4.16 lbs
1886.7 g / 18.5 N
|
|
| 100 °C | -28.8% |
1.44 kg / 3.17 lbs
1438.2 g / 14.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 10x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.98 kg / 10.97 lbs
4 893 Gs
|
0.75 kg / 1.65 lbs
746 g / 7.3 N
|
N/A |
| 1 mm |
4.09 kg / 9.01 lbs
6 155 Gs
|
0.61 kg / 1.35 lbs
613 g / 6.0 N
|
3.68 kg / 8.11 lbs
~0 Gs
|
| 2 mm |
3.21 kg / 7.08 lbs
5 455 Gs
|
0.48 kg / 1.06 lbs
482 g / 4.7 N
|
2.89 kg / 6.37 lbs
~0 Gs
|
| 3 mm |
2.44 kg / 5.39 lbs
4 758 Gs
|
0.37 kg / 0.81 lbs
366 g / 3.6 N
|
2.20 kg / 4.85 lbs
~0 Gs
|
| 5 mm |
1.34 kg / 2.94 lbs
3 518 Gs
|
0.20 kg / 0.44 lbs
200 g / 2.0 N
|
1.20 kg / 2.65 lbs
~0 Gs
|
| 10 mm |
0.28 kg / 0.61 lbs
1 606 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
433 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 10x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 10x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
36.15 km/h
(10.04 m/s)
|
0.08 J | |
| 30 mm |
62.46 km/h
(17.35 m/s)
|
0.24 J | |
| 50 mm |
80.63 km/h
(22.40 m/s)
|
0.40 J | |
| 100 mm |
114.03 km/h
(31.68 m/s)
|
0.79 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 10x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 10x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 480 Mx | 24.8 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 10x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.02 kg | Standard |
| Woda (dno rzeki) |
2.31 kg
(+0.29 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig określano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Podatność na pękanie
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Alergia na nikiel
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Wskazane jest stosowanie rękawic bezlateksowych.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Bezpieczny dystans
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Kompas i GPS
Silne pole magnetyczne zakłóca działanie magnetometrów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Nie przegrzewaj magnesów
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
