MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020114
GTIN: 5906301811206
Długość
10 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.56 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.86 kg / 8.47 N
Indukcja magnetyczna
239.33 mT / 2393 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz pytania?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz przez
formularz zapytania
na stronie kontakt.
Parametry i kształt magnesu testujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020114 |
| GTIN | 5906301811206 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.56 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.86 kg / 8.47 N |
| Indukcja magnetyczna ~ ? | 239.33 mT / 2393 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią wynik analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy NdFeB. Realne parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MPL 10x5x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2392 Gs
239.2 mT
|
0.86 kg / 860.0 g
8.4 N
|
bezpieczny |
| 1 mm |
1814 Gs
181.4 mT
|
0.49 kg / 494.9 g
4.9 N
|
bezpieczny |
| 2 mm |
1242 Gs
124.2 mT
|
0.23 kg / 232.1 g
2.3 N
|
bezpieczny |
| 3 mm |
836 Gs
83.6 mT
|
0.11 kg / 105.1 g
1.0 N
|
bezpieczny |
| 5 mm |
399 Gs
39.9 mT
|
0.02 kg / 23.9 g
0.2 N
|
bezpieczny |
| 10 mm |
94 Gs
9.4 mT
|
0.00 kg / 1.3 g
0.0 N
|
bezpieczny |
| 15 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 10x5x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 98.0 g
1.0 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x5x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 258.0 g
2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 172.0 g
1.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 86.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 430.0 g
4.2 N
|
MPL 10x5x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 86.0 g
0.8 N
|
| 1 mm |
|
0.22 kg / 215.0 g
2.1 N
|
| 2 mm |
|
0.43 kg / 430.0 g
4.2 N
|
| 5 mm |
|
0.86 kg / 860.0 g
8.4 N
|
| 10 mm |
|
0.86 kg / 860.0 g
8.4 N
|
MPL 10x5x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 860.0 g
8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 841.1 g
8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 822.2 g
8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 803.2 g
7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 612.3 g
6.0 N
|
MPL 10x5x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.76 kg / 1763 g
17.3 N
3 896 Gs
|
N/A |
| 1 mm |
1.39 kg / 1395 g
13.7 N
4 254 Gs
|
1.26 kg / 1255 g
12.3 N
~0 Gs
|
| 2 mm |
1.01 kg / 1015 g
10.0 N
3 628 Gs
|
0.91 kg / 913 g
9.0 N
~0 Gs
|
| 3 mm |
0.70 kg / 703 g
6.9 N
3 020 Gs
|
0.63 kg / 633 g
6.2 N
~0 Gs
|
| 5 mm |
0.32 kg / 320 g
3.1 N
2 037 Gs
|
0.29 kg / 288 g
2.8 N
~0 Gs
|
| 10 mm |
0.05 kg / 49 g
0.5 N
798 Gs
|
0.04 kg / 44 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 3 g
0.0 N
188 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
17 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x5x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MPL 10x5x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.56 km/h
(10.99 m/s)
|
0.03 J | |
| 30 mm |
68.45 km/h
(19.02 m/s)
|
0.10 J | |
| 50 mm |
88.37 km/h
(24.55 m/s)
|
0.17 J | |
| 100 mm |
124.98 km/h
(34.72 m/s)
|
0.34 J |
MPL 10x5x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x5x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 281 Mx | 12.8 µWb |
| Współczynnik Pc | 0.27 | Niski (Płaski) |
MPL 10x5x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.86 kg | Standard |
| Woda (dno rzeki) |
0.98 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów NdFeB.
Warto zwrócić uwagę, że obok wysokiej mocy, magnesy te cechują się następującymi plusami:
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Informacja o udźwigu została wyznaczona dla optymalnej konfiguracji, uwzględniającej:
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
Trzeba mieć na uwadze, że trzymanie magnesu może być niższe zależnie od następujących czynników, w kolejności ważności:
- Dystans (między magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
* Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Wady i zalety neodymowych magnesów NdFeB.
Warto zwrócić uwagę, że obok wysokiej mocy, magnesy te cechują się następującymi plusami:
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Informacja o udźwigu została wyznaczona dla optymalnej konfiguracji, uwzględniającej:
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
Trzeba mieć na uwadze, że trzymanie magnesu może być niższe zależnie od następujących czynników, w kolejności ważności:
- Dystans (między magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
* Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Implanty medyczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ochrona dłoni
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Samozapłon
Pył generowany podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
To nie jest zabawka
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Reakcje alergiczne
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
Ostrzeżenie!
Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
