MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030248
GTIN/EAN: 5906301812241
Średnica
36.2 mm [±0,1 mm]
Średnica wewnętrzna Ø
11/6 mm [±0,1 mm]
Wysokość
7.5 mm [±0,1 mm]
Waga
56.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
17.12 kg / 167.95 N
Indukcja magnetyczna
237.29 mT / 2373 Gs
Powłoka
[NiCuNi] nikiel
35.01 ZŁ z VAT / szt. + cena za transport
28.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie daj znać za pomocą
nasz formularz online
na stronie kontaktowej.
Udźwig i wygląd elementów magnetycznych skontrolujesz u nas w
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne - MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030248 |
| GTIN/EAN | 5906301812241 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 36.2 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 11/6 mm [±0,1 mm] |
| Wysokość | 7.5 mm [±0,1 mm] |
| Waga | 56.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 17.12 kg / 167.95 N |
| Indukcja magnetyczna ~ ? | 237.29 mT / 2373 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione informacje są rezultat symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MP 36.2x11/6x7.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2059 Gs
205.9 mT
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
miażdżący |
| 1 mm |
1997 Gs
199.7 mT
|
16.11 kg / 35.52 lbs
16110.1 g / 158.0 N
|
miażdżący |
| 2 mm |
1923 Gs
192.3 mT
|
14.93 kg / 32.91 lbs
14925.7 g / 146.4 N
|
miażdżący |
| 3 mm |
1838 Gs
183.8 mT
|
13.64 kg / 30.06 lbs
13636.4 g / 133.8 N
|
miażdżący |
| 5 mm |
1648 Gs
164.8 mT
|
10.97 kg / 24.18 lbs
10968.0 g / 107.6 N
|
miażdżący |
| 10 mm |
1161 Gs
116.1 mT
|
5.44 kg / 12.00 lbs
5444.8 g / 53.4 N
|
uwaga |
| 15 mm |
775 Gs
77.5 mT
|
2.43 kg / 5.35 lbs
2427.5 g / 23.8 N
|
uwaga |
| 20 mm |
515 Gs
51.5 mT
|
1.07 kg / 2.36 lbs
1071.1 g / 10.5 N
|
bezpieczny |
| 30 mm |
242 Gs
24.2 mT
|
0.24 kg / 0.52 lbs
236.8 g / 2.3 N
|
bezpieczny |
| 50 mm |
73 Gs
7.3 mT
|
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 36.2x11/6x7.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| 1 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3222.0 g / 31.6 N
|
| 2 mm | Stal (~0.2) |
2.99 kg / 6.58 lbs
2986.0 g / 29.3 N
|
| 3 mm | Stal (~0.2) |
2.73 kg / 6.01 lbs
2728.0 g / 26.8 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.84 lbs
2194.0 g / 21.5 N
|
| 10 mm | Stal (~0.2) |
1.09 kg / 2.40 lbs
1088.0 g / 10.7 N
|
| 15 mm | Stal (~0.2) |
0.49 kg / 1.07 lbs
486.0 g / 4.8 N
|
| 20 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
214.0 g / 2.1 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 36.2x11/6x7.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.14 kg / 11.32 lbs
5136.0 g / 50.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.71 kg / 3.77 lbs
1712.0 g / 16.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.56 kg / 18.87 lbs
8560.0 g / 84.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 36.2x11/6x7.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.86 kg / 1.89 lbs
856.0 g / 8.4 N
|
| 1 mm |
|
2.14 kg / 4.72 lbs
2140.0 g / 21.0 N
|
| 2 mm |
|
4.28 kg / 9.44 lbs
4280.0 g / 42.0 N
|
| 3 mm |
|
6.42 kg / 14.15 lbs
6420.0 g / 63.0 N
|
| 5 mm |
|
10.70 kg / 23.59 lbs
10700.0 g / 105.0 N
|
| 10 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
| 11 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
| 12 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 36.2x11/6x7.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
OK |
| 40 °C | -2.2% |
16.74 kg / 36.91 lbs
16743.4 g / 164.3 N
|
OK |
| 60 °C | -4.4% |
16.37 kg / 36.08 lbs
16366.7 g / 160.6 N
|
|
| 80 °C | -6.6% |
15.99 kg / 35.25 lbs
15990.1 g / 156.9 N
|
|
| 100 °C | -28.8% |
12.19 kg / 26.87 lbs
12189.4 g / 119.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 36.2x11/6x7.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.24 kg / 49.03 lbs
3 569 Gs
|
3.34 kg / 7.35 lbs
3336 g / 32.7 N
|
N/A |
| 1 mm |
21.62 kg / 47.67 lbs
4 061 Gs
|
3.24 kg / 7.15 lbs
3243 g / 31.8 N
|
19.46 kg / 42.90 lbs
~0 Gs
|
| 2 mm |
20.93 kg / 46.14 lbs
3 995 Gs
|
3.14 kg / 6.92 lbs
3139 g / 30.8 N
|
18.84 kg / 41.52 lbs
~0 Gs
|
| 3 mm |
20.18 kg / 44.49 lbs
3 923 Gs
|
3.03 kg / 6.67 lbs
3027 g / 29.7 N
|
18.16 kg / 40.04 lbs
~0 Gs
|
| 5 mm |
18.56 kg / 40.93 lbs
3 763 Gs
|
2.78 kg / 6.14 lbs
2785 g / 27.3 N
|
16.71 kg / 36.83 lbs
~0 Gs
|
| 10 mm |
14.25 kg / 31.41 lbs
3 296 Gs
|
2.14 kg / 4.71 lbs
2137 g / 21.0 N
|
12.82 kg / 28.27 lbs
~0 Gs
|
| 20 mm |
7.07 kg / 15.59 lbs
2 322 Gs
|
1.06 kg / 2.34 lbs
1061 g / 10.4 N
|
6.37 kg / 14.03 lbs
~0 Gs
|
| 50 mm |
0.64 kg / 1.40 lbs
697 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.57 kg / 1.26 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.68 lbs
484 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.5 N
|
0.28 kg / 0.61 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.35 lbs
346 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.19 lbs
254 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
191 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.06 lbs
147 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 36.2x11/6x7.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 36.2x11/6x7.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.79 km/h
(5.78 m/s)
|
0.94 J | |
| 30 mm |
30.72 km/h
(8.53 m/s)
|
2.05 J | |
| 50 mm |
39.36 km/h
(10.93 m/s)
|
3.36 J | |
| 100 mm |
55.61 km/h
(15.45 m/s)
|
6.72 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 36.2x11/6x7.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 36.2x11/6x7.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 038 Mx | 210.4 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 36.2x11/6x7.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 17.12 kg | Standard |
| Woda (dno rzeki) |
19.60 kg
(+2.48 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Dystans (pomiędzy magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Ostrożność wymagana
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie zapłonem
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Chronić przed dziećmi
Neodymowe magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Kruchy spiek
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Niklowa powłoka a alergia
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Wskazane jest używanie rękawiczek ochronnych.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
