MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030190
GTIN: 5906301812074
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
10.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.14 kg / 40.57 N
Indukcja magnetyczna
188.92 mT / 1889 Gs
Powłoka
[NiCuNi] nikiel
6.77 ZŁ z VAT / szt. + cena za transport
5.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz gdzie kupić?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
nasz formularz online
na stronie kontakt.
Parametry oraz kształt magnesu wyliczysz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030190 |
| GTIN | 5906301812074 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 10.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.14 kg / 40.57 N |
| Indukcja magnetyczna ~ ? | 188.92 mT / 1889 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Poniższe informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy NdFeB. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MP 25x13x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
4.14 kg / 4140.0 g
40.6 N
|
uwaga |
| 1 mm |
5310 Gs
531.0 mT
|
3.50 kg / 3497.4 g
34.3 N
|
uwaga |
| 2 mm |
4846 Gs
484.6 mT
|
2.91 kg / 2912.4 g
28.6 N
|
uwaga |
| 3 mm |
4397 Gs
439.7 mT
|
2.40 kg / 2398.5 g
23.5 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
1.59 kg / 1586.2 g
15.6 N
|
bezpieczny |
| 10 mm |
2073 Gs
207.3 mT
|
0.53 kg / 532.9 g
5.2 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.19 kg / 188.0 g
1.8 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.07 kg / 74.0 g
0.7 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 15.7 g
0.2 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 1.6 g
0.0 N
|
bezpieczny |
MP 25x13x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 828.0 g
8.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 700.0 g
6.9 N
|
| 2 mm | Stal (~0.2) |
0.58 kg / 582.0 g
5.7 N
|
| 3 mm | Stal (~0.2) |
0.48 kg / 480.0 g
4.7 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 318.0 g
3.1 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 25x13x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 1242.0 g
12.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 828.0 g
8.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 414.0 g
4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 2070.0 g
20.3 N
|
MP 25x13x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 414.0 g
4.1 N
|
| 1 mm |
|
1.04 kg / 1035.0 g
10.2 N
|
| 2 mm |
|
2.07 kg / 2070.0 g
20.3 N
|
| 5 mm |
|
4.14 kg / 4140.0 g
40.6 N
|
| 10 mm |
|
4.14 kg / 4140.0 g
40.6 N
|
MP 25x13x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 4140.0 g
40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 4048.9 g
39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 3957.8 g
38.8 N
|
OK |
| 80 °C | -6.6% |
3.87 kg / 3866.8 g
37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 2947.7 g
28.9 N
|
MP 25x13x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
83.66 kg / 83661 g
820.7 N
6 082 Gs
|
N/A |
| 1 mm |
77.09 kg / 77087 g
756.2 N
11 091 Gs
|
69.38 kg / 69378 g
680.6 N
~0 Gs
|
| 2 mm |
70.68 kg / 70675 g
693.3 N
10 620 Gs
|
63.61 kg / 63608 g
624.0 N
~0 Gs
|
| 3 mm |
64.59 kg / 64591 g
633.6 N
10 153 Gs
|
58.13 kg / 58131 g
570.3 N
~0 Gs
|
| 5 mm |
53.48 kg / 53478 g
524.6 N
9 238 Gs
|
48.13 kg / 48130 g
472.2 N
~0 Gs
|
| 10 mm |
32.05 kg / 32053 g
314.4 N
7 152 Gs
|
28.85 kg / 28848 g
283.0 N
~0 Gs
|
| 20 mm |
10.77 kg / 10768 g
105.6 N
4 145 Gs
|
9.69 kg / 9691 g
95.1 N
~0 Gs
|
| 50 mm |
0.66 kg / 657 g
6.4 N
1 024 Gs
|
0.59 kg / 592 g
5.8 N
~0 Gs
|
MP 25x13x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x13x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.33 km/h
(5.93 m/s)
|
0.19 J | |
| 30 mm |
34.38 km/h
(9.55 m/s)
|
0.49 J | |
| 50 mm |
44.29 km/h
(12.30 m/s)
|
0.81 J | |
| 100 mm |
62.62 km/h
(17.39 m/s)
|
1.62 J |
MP 25x13x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x13x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 861 Mx | 248.6 µWb |
| Współczynnik Pc | 1.02 | Wysoki (Stabilny) |
MP 25x13x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.14 kg | Standard |
| Woda (dno rzeki) |
4.74 kg
(+0.60 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne oferty
Wady i zalety magnesów z neodymu NdFeB.
Należy pamiętać, iż obok wysokiej mocy, produkty te cechują się następującymi zaletami:
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi jedynie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Maksymalny udźwig magnesu – co się na to składa?
Podany w tabeli udźwig jest rezultatem pomiaru zrealizowanego w specyficznych, idealnych warunkach:
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- której grubość to min. 10 mm
- z powierzchnią wolną od rys
- przy zerowej szczelinie (bez farby)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
Podczas codziennego użytkowania, rzeczywisty udźwig wynika z kilku kluczowych aspektów, uszeregowanych od najbardziej istotnych:
- Dystans (między magnesem a metalem), gdyż nawet bardzo mała przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy jest tracona w powietrzu.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Udźwig określano używając gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
BHP przy magnesach
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Zagrożenie zapłonem
Pył generowany podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Uszkodzenia czujników
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Implanty medyczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Safety First!
Szukasz szczegółów? Przeczytaj nasz artykuł: Czy magnesy są groźne?
