MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030190
GTIN/EAN: 5906301812074
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
10.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.14 kg / 40.57 N
Indukcja magnetyczna
188.92 mT / 1889 Gs
Powłoka
[NiCuNi] nikiel
6.77 ZŁ z VAT / szt. + cena za transport
5.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie napisz poprzez
formularz
w sekcji kontakt.
Masę a także kształt magnesów testujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030190 |
| GTIN/EAN | 5906301812074 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 10.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.14 kg / 40.57 N |
| Indukcja magnetyczna ~ ? | 188.92 mT / 1889 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze dane są bezpośredni efekt analizy fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MP 25x13x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
średnie ryzyko |
| 1 mm |
5310 Gs
531.0 mT
|
3.50 kg / 7.71 lbs
3497.4 g / 34.3 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
2.91 kg / 6.42 lbs
2912.4 g / 28.6 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
2.40 kg / 5.29 lbs
2398.5 g / 23.5 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
1.59 kg / 3.50 lbs
1586.2 g / 15.6 N
|
bezpieczny |
| 10 mm |
2073 Gs
207.3 mT
|
0.53 kg / 1.17 lbs
532.9 g / 5.2 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 0.03 lbs
15.7 g / 0.2 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 25x13x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 2 mm | Stal (~0.2) |
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 3 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 25x13x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 25x13x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| 1 mm |
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| 2 mm |
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
| 3 mm |
|
3.10 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 5 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 10 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 11 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 12 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 25x13x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 8.93 lbs
4048.9 g / 39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 8.73 lbs
3957.8 g / 38.8 N
|
OK |
| 80 °C | -6.6% |
3.87 kg / 8.52 lbs
3866.8 g / 37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 6.50 lbs
2947.7 g / 28.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 25x13x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
83.66 kg / 184.44 lbs
6 082 Gs
|
12.55 kg / 27.67 lbs
12549 g / 123.1 N
|
N/A |
| 1 mm |
77.09 kg / 169.95 lbs
11 091 Gs
|
11.56 kg / 25.49 lbs
11563 g / 113.4 N
|
69.38 kg / 152.95 lbs
~0 Gs
|
| 2 mm |
70.68 kg / 155.81 lbs
10 620 Gs
|
10.60 kg / 23.37 lbs
10601 g / 104.0 N
|
63.61 kg / 140.23 lbs
~0 Gs
|
| 3 mm |
64.59 kg / 142.40 lbs
10 153 Gs
|
9.69 kg / 21.36 lbs
9689 g / 95.0 N
|
58.13 kg / 128.16 lbs
~0 Gs
|
| 5 mm |
53.48 kg / 117.90 lbs
9 238 Gs
|
8.02 kg / 17.68 lbs
8022 g / 78.7 N
|
48.13 kg / 106.11 lbs
~0 Gs
|
| 10 mm |
32.05 kg / 70.66 lbs
7 152 Gs
|
4.81 kg / 10.60 lbs
4808 g / 47.2 N
|
28.85 kg / 63.60 lbs
~0 Gs
|
| 20 mm |
10.77 kg / 23.74 lbs
4 145 Gs
|
1.62 kg / 3.56 lbs
1615 g / 15.8 N
|
9.69 kg / 21.37 lbs
~0 Gs
|
| 50 mm |
0.66 kg / 1.45 lbs
1 024 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 60 mm |
0.32 kg / 0.70 lbs
712 Gs
|
0.05 kg / 0.10 lbs
48 g / 0.5 N
|
0.29 kg / 0.63 lbs
~0 Gs
|
| 70 mm |
0.17 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 25x13x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 25x13x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.33 km/h
(5.93 m/s)
|
0.19 J | |
| 30 mm |
34.38 km/h
(9.55 m/s)
|
0.49 J | |
| 50 mm |
44.29 km/h
(12.30 m/s)
|
0.81 J | |
| 100 mm |
62.62 km/h
(17.39 m/s)
|
1.62 J |
Tabela 9: Parametry powłoki (trwałość)
MP 25x13x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 25x13x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 861 Mx | 248.6 µWb |
| Współczynnik Pc | 1.02 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 25x13x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.14 kg | Standard |
| Woda (dno rzeki) |
4.74 kg
(+0.60 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.02
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość to min. 10 mm
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Nośniki danych
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Ryzyko uczulenia
Część populacji wykazuje alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może wywołać silną reakcję alergiczną. Zalecamy stosowanie rękawiczek ochronnych.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Wpływ na smartfony
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Temperatura pracy
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
