MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030190
GTIN/EAN: 5906301812074
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
10.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.14 kg / 40.57 N
Indukcja magnetyczna
188.92 mT / 1889 Gs
Powłoka
[NiCuNi] nikiel
6.77 ZŁ z VAT / szt. + cena za transport
5.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub skontaktuj się poprzez
nasz formularz online
przez naszą stronę.
Parametry i kształt magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030190 |
| GTIN/EAN | 5906301812074 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 10.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.14 kg / 40.57 N |
| Indukcja magnetyczna ~ ? | 188.92 mT / 1889 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze wartości są wynik analizy fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MP 25x13x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
mocny |
| 1 mm |
5310 Gs
531.0 mT
|
3.50 kg / 7.71 lbs
3497.4 g / 34.3 N
|
mocny |
| 2 mm |
4846 Gs
484.6 mT
|
2.91 kg / 6.42 lbs
2912.4 g / 28.6 N
|
mocny |
| 3 mm |
4397 Gs
439.7 mT
|
2.40 kg / 5.29 lbs
2398.5 g / 23.5 N
|
mocny |
| 5 mm |
3576 Gs
357.6 mT
|
1.59 kg / 3.50 lbs
1586.2 g / 15.6 N
|
bezpieczny |
| 10 mm |
2073 Gs
207.3 mT
|
0.53 kg / 1.17 lbs
532.9 g / 5.2 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 0.03 lbs
15.7 g / 0.2 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MP 25x13x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 2 mm | Stal (~0.2) |
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 3 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 25x13x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 25x13x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| 1 mm |
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| 2 mm |
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
| 3 mm |
|
3.10 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 5 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 10 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 11 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 12 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MP 25x13x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 8.93 lbs
4048.9 g / 39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 8.73 lbs
3957.8 g / 38.8 N
|
OK |
| 80 °C | -6.6% |
3.87 kg / 8.52 lbs
3866.8 g / 37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 6.50 lbs
2947.7 g / 28.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 25x13x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
83.66 kg / 184.44 lbs
6 082 Gs
|
12.55 kg / 27.67 lbs
12549 g / 123.1 N
|
N/A |
| 1 mm |
77.09 kg / 169.95 lbs
11 091 Gs
|
11.56 kg / 25.49 lbs
11563 g / 113.4 N
|
69.38 kg / 152.95 lbs
~0 Gs
|
| 2 mm |
70.68 kg / 155.81 lbs
10 620 Gs
|
10.60 kg / 23.37 lbs
10601 g / 104.0 N
|
63.61 kg / 140.23 lbs
~0 Gs
|
| 3 mm |
64.59 kg / 142.40 lbs
10 153 Gs
|
9.69 kg / 21.36 lbs
9689 g / 95.0 N
|
58.13 kg / 128.16 lbs
~0 Gs
|
| 5 mm |
53.48 kg / 117.90 lbs
9 238 Gs
|
8.02 kg / 17.68 lbs
8022 g / 78.7 N
|
48.13 kg / 106.11 lbs
~0 Gs
|
| 10 mm |
32.05 kg / 70.66 lbs
7 152 Gs
|
4.81 kg / 10.60 lbs
4808 g / 47.2 N
|
28.85 kg / 63.60 lbs
~0 Gs
|
| 20 mm |
10.77 kg / 23.74 lbs
4 145 Gs
|
1.62 kg / 3.56 lbs
1615 g / 15.8 N
|
9.69 kg / 21.37 lbs
~0 Gs
|
| 50 mm |
0.66 kg / 1.45 lbs
1 024 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 60 mm |
0.32 kg / 0.70 lbs
712 Gs
|
0.05 kg / 0.10 lbs
48 g / 0.5 N
|
0.29 kg / 0.63 lbs
~0 Gs
|
| 70 mm |
0.17 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 25x13x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 25x13x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.33 km/h
(5.93 m/s)
|
0.19 J | |
| 30 mm |
34.38 km/h
(9.55 m/s)
|
0.49 J | |
| 50 mm |
44.29 km/h
(12.30 m/s)
|
0.81 J | |
| 100 mm |
62.62 km/h
(17.39 m/s)
|
1.62 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x13x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 25x13x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 861 Mx | 248.6 µWb |
| Współczynnik Pc | 1.02 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 25x13x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.14 kg | Standard |
| Woda (dno rzeki) |
4.74 kg
(+0.60 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.02
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi jedynie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- przy bezpośrednim styku (bez farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Ochrona dłoni
Bloki magnetyczne mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Unikaj kontaktu w przypadku alergii
Część populacji ma alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może wywołać silną reakcję alergiczną. Rekomendujemy stosowanie rękawic bezlateksowych.
Bezpieczna praca
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Chronić przed dziećmi
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
