MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030190
GTIN/EAN: 5906301812074
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
10.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.14 kg / 40.57 N
Indukcja magnetyczna
188.92 mT / 1889 Gs
Powłoka
[NiCuNi] nikiel
6.77 ZŁ z VAT / szt. + cena za transport
5.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz poprzez
formularz
na naszej stronie.
Siłę i formę magnesów przetestujesz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030190 |
| GTIN/EAN | 5906301812074 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 10.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.14 kg / 40.57 N |
| Indukcja magnetyczna ~ ? | 188.92 mT / 1889 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Poniższe dane są wynik analizy inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 25x13x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
uwaga |
| 1 mm |
5310 Gs
531.0 mT
|
3.50 kg / 7.71 lbs
3497.4 g / 34.3 N
|
uwaga |
| 2 mm |
4846 Gs
484.6 mT
|
2.91 kg / 6.42 lbs
2912.4 g / 28.6 N
|
uwaga |
| 3 mm |
4397 Gs
439.7 mT
|
2.40 kg / 5.29 lbs
2398.5 g / 23.5 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
1.59 kg / 3.50 lbs
1586.2 g / 15.6 N
|
słaby uchwyt |
| 10 mm |
2073 Gs
207.3 mT
|
0.53 kg / 1.17 lbs
532.9 g / 5.2 N
|
słaby uchwyt |
| 15 mm |
1231 Gs
123.1 mT
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
słaby uchwyt |
| 20 mm |
773 Gs
77.3 mT
|
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
słaby uchwyt |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 0.03 lbs
15.7 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 25x13x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 2 mm | Stal (~0.2) |
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 3 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 25x13x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 25x13x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| 1 mm |
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| 2 mm |
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
| 3 mm |
|
3.10 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 5 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 10 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 11 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 12 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 25x13x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 8.93 lbs
4048.9 g / 39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 8.73 lbs
3957.8 g / 38.8 N
|
OK |
| 80 °C | -6.6% |
3.87 kg / 8.52 lbs
3866.8 g / 37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 6.50 lbs
2947.7 g / 28.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 25x13x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
83.66 kg / 184.44 lbs
6 082 Gs
|
12.55 kg / 27.67 lbs
12549 g / 123.1 N
|
N/A |
| 1 mm |
77.09 kg / 169.95 lbs
11 091 Gs
|
11.56 kg / 25.49 lbs
11563 g / 113.4 N
|
69.38 kg / 152.95 lbs
~0 Gs
|
| 2 mm |
70.68 kg / 155.81 lbs
10 620 Gs
|
10.60 kg / 23.37 lbs
10601 g / 104.0 N
|
63.61 kg / 140.23 lbs
~0 Gs
|
| 3 mm |
64.59 kg / 142.40 lbs
10 153 Gs
|
9.69 kg / 21.36 lbs
9689 g / 95.0 N
|
58.13 kg / 128.16 lbs
~0 Gs
|
| 5 mm |
53.48 kg / 117.90 lbs
9 238 Gs
|
8.02 kg / 17.68 lbs
8022 g / 78.7 N
|
48.13 kg / 106.11 lbs
~0 Gs
|
| 10 mm |
32.05 kg / 70.66 lbs
7 152 Gs
|
4.81 kg / 10.60 lbs
4808 g / 47.2 N
|
28.85 kg / 63.60 lbs
~0 Gs
|
| 20 mm |
10.77 kg / 23.74 lbs
4 145 Gs
|
1.62 kg / 3.56 lbs
1615 g / 15.8 N
|
9.69 kg / 21.37 lbs
~0 Gs
|
| 50 mm |
0.66 kg / 1.45 lbs
1 024 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 60 mm |
0.32 kg / 0.70 lbs
712 Gs
|
0.05 kg / 0.10 lbs
48 g / 0.5 N
|
0.29 kg / 0.63 lbs
~0 Gs
|
| 70 mm |
0.17 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 25x13x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 25x13x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.33 km/h
(5.93 m/s)
|
0.19 J | |
| 30 mm |
34.38 km/h
(9.55 m/s)
|
0.49 J | |
| 50 mm |
44.29 km/h
(12.30 m/s)
|
0.81 J | |
| 100 mm |
62.62 km/h
(17.39 m/s)
|
1.62 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 25x13x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 25x13x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 861 Mx | 248.6 µWb |
| Współczynnik Pc | 1.02 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 25x13x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.14 kg | Standard |
| Woda (dno rzeki) |
4.74 kg
(+0.60 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.02
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
BHP przy magnesach
Urazy ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Trwała utrata siły
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko pęknięcia
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Reakcje alergiczne
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Świadome użytkowanie
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
