MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030189
GTIN/EAN: 5906301812067
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
11.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.22 kg / 70.81 N
Indukcja magnetyczna
318.85 mT / 3188 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie daj znać poprzez
formularz
przez naszą stronę.
Parametry a także kształt elementów magnetycznych sprawdzisz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry techniczne - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030189 |
| GTIN/EAN | 5906301812067 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 11.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.22 kg / 70.81 N |
| Indukcja magnetyczna ~ ? | 318.85 mT / 3188 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Przedstawione informacje są wynik kalkulacji fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MP 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
5.84 kg / 12.87 lbs
5839.8 g / 57.3 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
4.63 kg / 10.20 lbs
4626.6 g / 45.4 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
2.13 kg / 4.70 lbs
2132.9 g / 20.9 N
|
uwaga |
| 10 mm |
1650 Gs
165.0 mT
|
0.56 kg / 1.24 lbs
561.3 g / 5.5 N
|
słaby uchwyt |
| 15 mm |
907 Gs
90.7 mT
|
0.17 kg / 0.37 lbs
169.7 g / 1.7 N
|
słaby uchwyt |
| 20 mm |
544 Gs
54.4 mT
|
0.06 kg / 0.13 lbs
61.1 g / 0.6 N
|
słaby uchwyt |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.03 lbs
11.9 g / 0.1 N
|
słaby uchwyt |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MP 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1444.0 g / 14.2 N
|
| 1 mm | Stal (~0.2) |
1.17 kg / 2.57 lbs
1168.0 g / 11.5 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 2.04 lbs
926.0 g / 9.1 N
|
| 3 mm | Stal (~0.2) |
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| 5 mm | Stal (~0.2) |
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 4.78 lbs
2166.0 g / 21.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.44 kg / 3.18 lbs
1444.0 g / 14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| 1 mm |
|
1.81 kg / 3.98 lbs
1805.0 g / 17.7 N
|
| 2 mm |
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
| 3 mm |
|
5.42 kg / 11.94 lbs
5415.0 g / 53.1 N
|
| 5 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 10 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 11 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 12 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MP 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
OK |
| 40 °C | -2.2% |
7.06 kg / 15.57 lbs
7061.2 g / 69.3 N
|
OK |
| 60 °C | -4.4% |
6.90 kg / 15.22 lbs
6902.3 g / 67.7 N
|
OK |
| 80 °C | -6.6% |
6.74 kg / 14.87 lbs
6743.5 g / 66.2 N
|
|
| 100 °C | -28.8% |
5.14 kg / 11.33 lbs
5140.6 g / 50.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
52.44 kg / 115.62 lbs
6 121 Gs
|
7.87 kg / 17.34 lbs
7867 g / 77.2 N
|
N/A |
| 1 mm |
47.33 kg / 104.35 lbs
11 242 Gs
|
7.10 kg / 15.65 lbs
7100 g / 69.6 N
|
42.60 kg / 93.91 lbs
~0 Gs
|
| 2 mm |
42.42 kg / 93.52 lbs
10 642 Gs
|
6.36 kg / 14.03 lbs
6363 g / 62.4 N
|
38.18 kg / 84.16 lbs
~0 Gs
|
| 3 mm |
37.84 kg / 83.42 lbs
10 051 Gs
|
5.68 kg / 12.51 lbs
5675 g / 55.7 N
|
34.05 kg / 75.07 lbs
~0 Gs
|
| 5 mm |
29.73 kg / 65.55 lbs
8 910 Gs
|
4.46 kg / 9.83 lbs
4460 g / 43.8 N
|
26.76 kg / 59.00 lbs
~0 Gs
|
| 10 mm |
15.49 kg / 34.16 lbs
6 432 Gs
|
2.32 kg / 5.12 lbs
2324 g / 22.8 N
|
13.94 kg / 30.74 lbs
~0 Gs
|
| 20 mm |
4.08 kg / 8.99 lbs
3 299 Gs
|
0.61 kg / 1.35 lbs
612 g / 6.0 N
|
3.67 kg / 8.09 lbs
~0 Gs
|
| 50 mm |
0.18 kg / 0.41 lbs
702 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.19 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.04 km/h
(7.23 m/s)
|
0.31 J | |
| 30 mm |
43.11 km/h
(11.97 m/s)
|
0.85 J | |
| 50 mm |
55.60 km/h
(15.44 m/s)
|
1.42 J | |
| 100 mm |
78.62 km/h
(21.84 m/s)
|
2.83 J |
Tabela 9: Parametry powłoki (trwałość)
MP 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 688 Mx | 156.9 µWb |
| Współczynnik Pc | 1.14 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.22 kg | Standard |
| Woda (dno rzeki) |
8.27 kg
(+1.05 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
UMP 75x25 [M10x3] GW F200 PLATINIUM Lina / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig wyznaczano stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Ostrzeżenia
Bezpieczny dystans
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Interferencja magnetyczna
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Implanty kardiologiczne
Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Ryzyko zmiażdżenia
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Temperatura pracy
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Uwaga na odpryski
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
