MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030189
GTIN/EAN: 5906301812067
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
11.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.22 kg / 70.81 N
Indukcja magnetyczna
318.85 mT / 3188 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo pisz korzystając z
nasz formularz online
w sekcji kontakt.
Właściwości oraz kształt magnesu neodymowego zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030189 |
| GTIN/EAN | 5906301812067 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 11.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.22 kg / 70.81 N |
| Indukcja magnetyczna ~ ? | 318.85 mT / 3188 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Niniejsze wartości są bezpośredni efekt analizy fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MP 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
5.84 kg / 12.87 lbs
5839.8 g / 57.3 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
4.63 kg / 10.20 lbs
4626.6 g / 45.4 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
2.13 kg / 4.70 lbs
2132.9 g / 20.9 N
|
uwaga |
| 10 mm |
1650 Gs
165.0 mT
|
0.56 kg / 1.24 lbs
561.3 g / 5.5 N
|
słaby uchwyt |
| 15 mm |
907 Gs
90.7 mT
|
0.17 kg / 0.37 lbs
169.7 g / 1.7 N
|
słaby uchwyt |
| 20 mm |
544 Gs
54.4 mT
|
0.06 kg / 0.13 lbs
61.1 g / 0.6 N
|
słaby uchwyt |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.03 lbs
11.9 g / 0.1 N
|
słaby uchwyt |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1444.0 g / 14.2 N
|
| 1 mm | Stal (~0.2) |
1.17 kg / 2.57 lbs
1168.0 g / 11.5 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 2.04 lbs
926.0 g / 9.1 N
|
| 3 mm | Stal (~0.2) |
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| 5 mm | Stal (~0.2) |
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 4.78 lbs
2166.0 g / 21.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.44 kg / 3.18 lbs
1444.0 g / 14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| 1 mm |
|
1.81 kg / 3.98 lbs
1805.0 g / 17.7 N
|
| 2 mm |
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
| 3 mm |
|
5.42 kg / 11.94 lbs
5415.0 g / 53.1 N
|
| 5 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 10 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 11 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 12 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
OK |
| 40 °C | -2.2% |
7.06 kg / 15.57 lbs
7061.2 g / 69.3 N
|
OK |
| 60 °C | -4.4% |
6.90 kg / 15.22 lbs
6902.3 g / 67.7 N
|
OK |
| 80 °C | -6.6% |
6.74 kg / 14.87 lbs
6743.5 g / 66.2 N
|
|
| 100 °C | -28.8% |
5.14 kg / 11.33 lbs
5140.6 g / 50.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MP 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
52.44 kg / 115.62 lbs
6 121 Gs
|
7.87 kg / 17.34 lbs
7867 g / 77.2 N
|
N/A |
| 1 mm |
47.33 kg / 104.35 lbs
11 242 Gs
|
7.10 kg / 15.65 lbs
7100 g / 69.6 N
|
42.60 kg / 93.91 lbs
~0 Gs
|
| 2 mm |
42.42 kg / 93.52 lbs
10 642 Gs
|
6.36 kg / 14.03 lbs
6363 g / 62.4 N
|
38.18 kg / 84.16 lbs
~0 Gs
|
| 3 mm |
37.84 kg / 83.42 lbs
10 051 Gs
|
5.68 kg / 12.51 lbs
5675 g / 55.7 N
|
34.05 kg / 75.07 lbs
~0 Gs
|
| 5 mm |
29.73 kg / 65.55 lbs
8 910 Gs
|
4.46 kg / 9.83 lbs
4460 g / 43.8 N
|
26.76 kg / 59.00 lbs
~0 Gs
|
| 10 mm |
15.49 kg / 34.16 lbs
6 432 Gs
|
2.32 kg / 5.12 lbs
2324 g / 22.8 N
|
13.94 kg / 30.74 lbs
~0 Gs
|
| 20 mm |
4.08 kg / 8.99 lbs
3 299 Gs
|
0.61 kg / 1.35 lbs
612 g / 6.0 N
|
3.67 kg / 8.09 lbs
~0 Gs
|
| 50 mm |
0.18 kg / 0.41 lbs
702 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.19 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.04 km/h
(7.23 m/s)
|
0.31 J | |
| 30 mm |
43.11 km/h
(11.97 m/s)
|
0.85 J | |
| 50 mm |
55.60 km/h
(15.44 m/s)
|
1.42 J | |
| 100 mm |
78.62 km/h
(21.84 m/s)
|
2.83 J |
Tabela 9: Odporność na korozję
MP 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 688 Mx | 156.9 µWb |
| Współczynnik Pc | 1.14 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.22 kg | Standard |
| Woda (dno rzeki) |
8.27 kg
(+1.05 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości przynajmniej 10 mm
- o szlifowanej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig wyznaczano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Poważne obrażenia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Nie zbliżaj do komputera
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Utrata mocy w cieple
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Kruchość materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie wybuchem pyłu
Proszek generowany podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie dla najmłodszych
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
