MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030181
GTIN/EAN: 5906301811985
Średnica
14 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.18 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.53 kg / 24.85 N
Indukcja magnetyczna
244.11 mT / 2441 Gs
Powłoka
[NiCuNi] nikiel
2.47 ZŁ z VAT / szt. + cena za transport
2.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz za pomocą
nasz formularz online
na naszej stronie.
Udźwig i budowę magnesów wyliczysz u nas w
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030181 |
| GTIN/EAN | 5906301811985 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 14 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.53 kg / 24.85 N |
| Indukcja magnetyczna ~ ? | 244.11 mT / 2441 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Poniższe dane są rezultat kalkulacji matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MP 14x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2121 Gs
212.1 mT
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
mocny |
| 1 mm |
1927 Gs
192.7 mT
|
2.09 kg / 4.61 lbs
2090.1 g / 20.5 N
|
mocny |
| 2 mm |
1676 Gs
167.6 mT
|
1.58 kg / 3.48 lbs
1579.6 g / 15.5 N
|
niskie ryzyko |
| 3 mm |
1410 Gs
141.0 mT
|
1.12 kg / 2.46 lbs
1117.9 g / 11.0 N
|
niskie ryzyko |
| 5 mm |
943 Gs
94.3 mT
|
0.50 kg / 1.10 lbs
500.1 g / 4.9 N
|
niskie ryzyko |
| 10 mm |
335 Gs
33.5 mT
|
0.06 kg / 0.14 lbs
63.3 g / 0.6 N
|
niskie ryzyko |
| 15 mm |
140 Gs
14.0 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 14x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
506.0 g / 5.0 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.32 kg / 0.70 lbs
316.0 g / 3.1 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 14x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.76 kg / 1.67 lbs
759.0 g / 7.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.51 kg / 1.12 lbs
506.0 g / 5.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 0.56 lbs
253.0 g / 2.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.27 kg / 2.79 lbs
1265.0 g / 12.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 14x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 0.56 lbs
253.0 g / 2.5 N
|
| 1 mm |
|
0.63 kg / 1.39 lbs
632.5 g / 6.2 N
|
| 2 mm |
|
1.27 kg / 2.79 lbs
1265.0 g / 12.4 N
|
| 3 mm |
|
1.90 kg / 4.18 lbs
1897.5 g / 18.6 N
|
| 5 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 10 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 11 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 12 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 14x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
OK |
| 40 °C | -2.2% |
2.47 kg / 5.45 lbs
2474.3 g / 24.3 N
|
OK |
| 60 °C | -4.4% |
2.42 kg / 5.33 lbs
2418.7 g / 23.7 N
|
|
| 80 °C | -6.6% |
2.36 kg / 5.21 lbs
2363.0 g / 23.2 N
|
|
| 100 °C | -28.8% |
1.80 kg / 3.97 lbs
1801.4 g / 17.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 14x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.33 kg / 7.34 lbs
3 647 Gs
|
0.50 kg / 1.10 lbs
500 g / 4.9 N
|
N/A |
| 1 mm |
3.07 kg / 6.76 lbs
4 070 Gs
|
0.46 kg / 1.01 lbs
460 g / 4.5 N
|
2.76 kg / 6.09 lbs
~0 Gs
|
| 2 mm |
2.75 kg / 6.07 lbs
3 855 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.0 N
|
2.48 kg / 5.46 lbs
~0 Gs
|
| 3 mm |
2.42 kg / 5.33 lbs
3 612 Gs
|
0.36 kg / 0.80 lbs
362 g / 3.6 N
|
2.17 kg / 4.79 lbs
~0 Gs
|
| 5 mm |
1.76 kg / 3.88 lbs
3 084 Gs
|
0.26 kg / 0.58 lbs
264 g / 2.6 N
|
1.59 kg / 3.50 lbs
~0 Gs
|
| 10 mm |
0.66 kg / 1.45 lbs
1 886 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 20 mm |
0.08 kg / 0.18 lbs
671 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
77 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 14x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 14x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.89 km/h
(8.02 m/s)
|
0.10 J | |
| 30 mm |
49.27 km/h
(13.69 m/s)
|
0.30 J | |
| 50 mm |
63.61 km/h
(17.67 m/s)
|
0.50 J | |
| 100 mm |
89.96 km/h
(24.99 m/s)
|
0.99 J |
Tabela 9: Odporność na korozję
MP 14x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 14x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 101 Mx | 31.0 µWb |
| Współczynnik Pc | 0.28 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 14x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.53 kg | Standard |
| Woda (dno rzeki) |
2.90 kg
(+0.37 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.28
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Co wpływa na udźwig w praktyce
- Dystans – występowanie ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Karty i dyski
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Reakcje alergiczne
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Niebezpieczeństwo dla rozruszników
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Uwaga na odpryski
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Uszkodzenia ciała
Duże magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
