MW 24x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010048
GTIN/EAN: 5906301810476
Średnica Ø
24 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
20.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.98 kg / 97.88 N
Indukcja magnetyczna
277.18 mT / 2772 Gs
Powłoka
[Zn] cynk
5.10 ZŁ z VAT / szt. + cena za transport
4.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie napisz za pomocą
nasz formularz online
przez naszą stronę.
Udźwig a także budowę magnesów sprawdzisz dzięki naszemu
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MW 24x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 24x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010048 |
| GTIN/EAN | 5906301810476 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 24 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 20.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.98 kg / 97.88 N |
| Indukcja magnetyczna ~ ? | 277.18 mT / 2772 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Przedstawione informacje stanowią wynik kalkulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 24x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
uwaga |
| 1 mm |
2609 Gs
260.9 mT
|
8.85 kg / 19.50 lbs
8846.4 g / 86.8 N
|
uwaga |
| 2 mm |
2420 Gs
242.0 mT
|
7.61 kg / 16.78 lbs
7609.6 g / 74.7 N
|
uwaga |
| 3 mm |
2216 Gs
221.6 mT
|
6.38 kg / 14.07 lbs
6383.0 g / 62.6 N
|
uwaga |
| 5 mm |
1805 Gs
180.5 mT
|
4.23 kg / 9.33 lbs
4233.2 g / 41.5 N
|
uwaga |
| 10 mm |
991 Gs
99.1 mT
|
1.28 kg / 2.81 lbs
1275.9 g / 12.5 N
|
niskie ryzyko |
| 15 mm |
542 Gs
54.2 mT
|
0.38 kg / 0.84 lbs
381.4 g / 3.7 N
|
niskie ryzyko |
| 20 mm |
313 Gs
31.3 mT
|
0.13 kg / 0.28 lbs
127.2 g / 1.2 N
|
niskie ryzyko |
| 30 mm |
125 Gs
12.5 mT
|
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 24x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.90 lbs
1770.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.52 kg / 3.36 lbs
1522.0 g / 14.9 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 5 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
846.0 g / 8.3 N
|
| 10 mm | Stal (~0.2) |
0.26 kg / 0.56 lbs
256.0 g / 2.5 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 24x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.99 kg / 6.60 lbs
2994.0 g / 29.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 24x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| 1 mm |
|
2.50 kg / 5.50 lbs
2495.0 g / 24.5 N
|
| 2 mm |
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
| 3 mm |
|
7.49 kg / 16.50 lbs
7485.0 g / 73.4 N
|
| 5 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 10 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 11 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 12 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 24x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
OK |
| 40 °C | -2.2% |
9.76 kg / 21.52 lbs
9760.4 g / 95.7 N
|
OK |
| 60 °C | -4.4% |
9.54 kg / 21.03 lbs
9540.9 g / 93.6 N
|
|
| 80 °C | -6.6% |
9.32 kg / 20.55 lbs
9321.3 g / 91.4 N
|
|
| 100 °C | -28.8% |
7.11 kg / 15.67 lbs
7105.8 g / 69.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 24x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.42 kg / 47.22 lbs
4 381 Gs
|
3.21 kg / 7.08 lbs
3213 g / 31.5 N
|
N/A |
| 1 mm |
20.25 kg / 44.65 lbs
5 390 Gs
|
3.04 kg / 6.70 lbs
3038 g / 29.8 N
|
18.23 kg / 40.19 lbs
~0 Gs
|
| 2 mm |
18.99 kg / 41.86 lbs
5 218 Gs
|
2.85 kg / 6.28 lbs
2848 g / 27.9 N
|
17.09 kg / 37.67 lbs
~0 Gs
|
| 3 mm |
17.67 kg / 38.95 lbs
5 034 Gs
|
2.65 kg / 5.84 lbs
2650 g / 26.0 N
|
15.90 kg / 35.06 lbs
~0 Gs
|
| 5 mm |
15.00 kg / 33.07 lbs
4 638 Gs
|
2.25 kg / 4.96 lbs
2250 g / 22.1 N
|
13.50 kg / 29.76 lbs
~0 Gs
|
| 10 mm |
9.09 kg / 20.03 lbs
3 610 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.03 lbs
~0 Gs
|
| 20 mm |
2.74 kg / 6.04 lbs
1 982 Gs
|
0.41 kg / 0.91 lbs
411 g / 4.0 N
|
2.46 kg / 5.43 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.23 lbs
385 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.10 lbs
251 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
171 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
121 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
67 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 24x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 24x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.05 km/h
(6.68 m/s)
|
0.45 J | |
| 30 mm |
38.72 km/h
(10.76 m/s)
|
1.18 J | |
| 50 mm |
49.93 km/h
(13.87 m/s)
|
1.96 J | |
| 100 mm |
70.61 km/h
(19.61 m/s)
|
3.92 J |
Tabela 9: Odporność na korozję
MW 24x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane elektryczne (Flux)
MW 24x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 932 Mx | 139.3 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 24x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.98 kg | Standard |
| Woda (dno rzeki) |
11.43 kg
(+1.45 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, która służy jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet niewielka odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka płyta nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Ostrzeżenie dla sercowców
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Nie zbliżaj do komputera
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Potężne pole
Używaj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Alergia na nikiel
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
To nie jest zabawka
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Rozprysk materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Siła zgniatająca
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
