MW 19x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010038
GTIN/EAN: 5906301810377
Średnica Ø
19 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
8.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.96 kg / 48.62 N
Indukcja magnetyczna
240.51 mT / 2405 Gs
Powłoka
[Zn] cynk
4.80 ZŁ z VAT / szt. + cena za transport
3.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo zostaw wiadomość za pomocą
formularz zapytania
przez naszą stronę.
Siłę oraz budowę magnesów obliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MW 19x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 19x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010038 |
| GTIN/EAN | 5906301810377 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 19 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 8.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.96 kg / 48.62 N |
| Indukcja magnetyczna ~ ? | 240.51 mT / 2405 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione dane stanowią wynik analizy fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 19x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2405 Gs
240.5 mT
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
średnie ryzyko |
| 1 mm |
2239 Gs
223.9 mT
|
4.30 kg / 9.48 lbs
4299.0 g / 42.2 N
|
średnie ryzyko |
| 2 mm |
2033 Gs
203.3 mT
|
3.55 kg / 7.82 lbs
3547.4 g / 34.8 N
|
średnie ryzyko |
| 3 mm |
1811 Gs
181.1 mT
|
2.81 kg / 6.20 lbs
2813.0 g / 27.6 N
|
średnie ryzyko |
| 5 mm |
1376 Gs
137.6 mT
|
1.63 kg / 3.58 lbs
1625.2 g / 15.9 N
|
bezpieczny |
| 10 mm |
635 Gs
63.5 mT
|
0.35 kg / 0.76 lbs
346.3 g / 3.4 N
|
bezpieczny |
| 15 mm |
308 Gs
30.8 mT
|
0.08 kg / 0.18 lbs
81.2 g / 0.8 N
|
bezpieczny |
| 20 mm |
164 Gs
16.4 mT
|
0.02 kg / 0.05 lbs
23.2 g / 0.2 N
|
bezpieczny |
| 30 mm |
61 Gs
6.1 mT
|
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 19x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.71 kg / 1.57 lbs
710.0 g / 7.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
562.0 g / 5.5 N
|
| 5 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 19x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.49 kg / 3.28 lbs
1488.0 g / 14.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.50 kg / 1.09 lbs
496.0 g / 4.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.48 kg / 5.47 lbs
2480.0 g / 24.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 19x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.50 kg / 1.09 lbs
496.0 g / 4.9 N
|
| 1 mm |
|
1.24 kg / 2.73 lbs
1240.0 g / 12.2 N
|
| 2 mm |
|
2.48 kg / 5.47 lbs
2480.0 g / 24.3 N
|
| 3 mm |
|
3.72 kg / 8.20 lbs
3720.0 g / 36.5 N
|
| 5 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
| 10 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
| 11 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
| 12 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 19x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
OK |
| 40 °C | -2.2% |
4.85 kg / 10.69 lbs
4850.9 g / 47.6 N
|
OK |
| 60 °C | -4.4% |
4.74 kg / 10.45 lbs
4741.8 g / 46.5 N
|
|
| 80 °C | -6.6% |
4.63 kg / 10.21 lbs
4632.6 g / 45.4 N
|
|
| 100 °C | -28.8% |
3.53 kg / 7.79 lbs
3531.5 g / 34.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 19x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.11 kg / 22.28 lbs
3 990 Gs
|
1.52 kg / 3.34 lbs
1516 g / 14.9 N
|
N/A |
| 1 mm |
9.48 kg / 20.89 lbs
4 657 Gs
|
1.42 kg / 3.13 lbs
1421 g / 13.9 N
|
8.53 kg / 18.80 lbs
~0 Gs
|
| 2 mm |
8.76 kg / 19.31 lbs
4 477 Gs
|
1.31 kg / 2.90 lbs
1314 g / 12.9 N
|
7.88 kg / 17.38 lbs
~0 Gs
|
| 3 mm |
8.00 kg / 17.64 lbs
4 279 Gs
|
1.20 kg / 2.65 lbs
1200 g / 11.8 N
|
7.20 kg / 15.88 lbs
~0 Gs
|
| 5 mm |
6.47 kg / 14.25 lbs
3 846 Gs
|
0.97 kg / 2.14 lbs
970 g / 9.5 N
|
5.82 kg / 12.83 lbs
~0 Gs
|
| 10 mm |
3.31 kg / 7.30 lbs
2 753 Gs
|
0.50 kg / 1.10 lbs
497 g / 4.9 N
|
2.98 kg / 6.57 lbs
~0 Gs
|
| 20 mm |
0.71 kg / 1.56 lbs
1 271 Gs
|
0.11 kg / 0.23 lbs
106 g / 1.0 N
|
0.64 kg / 1.40 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
193 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
121 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
81 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 19x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 19x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.39 km/h
(7.05 m/s)
|
0.21 J | |
| 30 mm |
42.19 km/h
(11.72 m/s)
|
0.58 J | |
| 50 mm |
54.44 km/h
(15.12 m/s)
|
0.97 J | |
| 100 mm |
76.99 km/h
(21.39 m/s)
|
1.95 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 19x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane elektryczne (Pc)
MW 19x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 831 Mx | 78.3 µWb |
| Współczynnik Pc | 0.30 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 19x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.96 kg | Standard |
| Woda (dno rzeki) |
5.68 kg
(+0.72 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.30
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- o wypolerowanej powierzchni styku
- przy zerowej szczelinie (brak powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (między magnesem a metalem), bowiem nawet niewielka odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda stal powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje udźwig.
BHP przy magnesach
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ostrożność wymagana
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Chronić przed dziećmi
Neodymowe magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
