MW 6x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010092
GTIN/EAN: 5906301810919
Średnica Ø
6 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.42 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.86 kg / 8.43 N
Indukcja magnetyczna
343.37 mT / 3434 Gs
Powłoka
[NiCuNi] nikiel
0.246 ZŁ z VAT / szt. + cena za transport
0.200 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo zostaw wiadomość poprzez
nasz formularz online
na naszej stronie.
Udźwig a także formę magnesów neodymowych sprawdzisz u nas w
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MW 6x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 6x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010092 |
| GTIN/EAN | 5906301810919 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 6 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.42 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.86 kg / 8.43 N |
| Indukcja magnetyczna ~ ? | 343.37 mT / 3434 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze dane stanowią bezpośredni efekt symulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 6x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3430 Gs
343.0 mT
|
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
bezpieczny |
| 1 mm |
2423 Gs
242.3 mT
|
0.43 kg / 0.95 lbs
429.2 g / 4.2 N
|
bezpieczny |
| 2 mm |
1521 Gs
152.1 mT
|
0.17 kg / 0.37 lbs
169.0 g / 1.7 N
|
bezpieczny |
| 3 mm |
932 Gs
93.2 mT
|
0.06 kg / 0.14 lbs
63.5 g / 0.6 N
|
bezpieczny |
| 5 mm |
382 Gs
38.2 mT
|
0.01 kg / 0.02 lbs
10.7 g / 0.1 N
|
bezpieczny |
| 10 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
bezpieczny |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 6x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 1 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 6x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 0.57 lbs
258.0 g / 2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 6x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 1 mm |
|
0.22 kg / 0.47 lbs
215.0 g / 2.1 N
|
| 2 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 3 mm |
|
0.65 kg / 1.42 lbs
645.0 g / 6.3 N
|
| 5 mm |
|
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
| 10 mm |
|
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
| 11 mm |
|
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
| 12 mm |
|
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 6x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 1.85 lbs
841.1 g / 8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 1.81 lbs
822.2 g / 8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 1.77 lbs
803.2 g / 7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 1.35 lbs
612.3 g / 6.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 6x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.05 kg / 4.52 lbs
4 944 Gs
|
0.31 kg / 0.68 lbs
308 g / 3.0 N
|
N/A |
| 1 mm |
1.52 kg / 3.34 lbs
5 900 Gs
|
0.23 kg / 0.50 lbs
228 g / 2.2 N
|
1.37 kg / 3.01 lbs
~0 Gs
|
| 2 mm |
1.02 kg / 2.26 lbs
4 847 Gs
|
0.15 kg / 0.34 lbs
154 g / 1.5 N
|
0.92 kg / 2.03 lbs
~0 Gs
|
| 3 mm |
0.65 kg / 1.44 lbs
3 869 Gs
|
0.10 kg / 0.22 lbs
98 g / 1.0 N
|
0.59 kg / 1.29 lbs
~0 Gs
|
| 5 mm |
0.25 kg / 0.54 lbs
2 379 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 10 mm |
0.03 kg / 0.06 lbs
764 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
153 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 6x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 6x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.65 km/h
(12.68 m/s)
|
0.03 J | |
| 30 mm |
79.04 km/h
(21.96 m/s)
|
0.10 J | |
| 50 mm |
102.04 km/h
(28.35 m/s)
|
0.17 J | |
| 100 mm |
144.31 km/h
(40.09 m/s)
|
0.34 J |
Tabela 9: Odporność na korozję
MW 6x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 6x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 029 Mx | 10.3 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 6x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.86 kg | Standard |
| Woda (dno rzeki) |
0.98 kg
(+0.12 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) zyskują nowoczesny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy bezpośrednim styku (bez farby)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (między magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia ucieka w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Implanty medyczne
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Urazy ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Zakaz zabawy
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Dla uczulonych
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
