MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030198
GTIN/EAN: 5906301812159
Średnica
32 mm [±0,1 mm]
Średnica wewnętrzna Ø
16 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.79 kg / 27.40 N
Indukcja magnetyczna
114.25 mT / 1142 Gs
Powłoka
[NiCuNi] nikiel
5.24 ZŁ z VAT / szt. + cena za transport
4.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie daj znać poprzez
nasz formularz online
na stronie kontakt.
Parametry oraz formę magnesu neodymowego sprawdzisz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030198 |
| GTIN/EAN | 5906301812159 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 32 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 16 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.79 kg / 27.40 N |
| Indukcja magnetyczna ~ ? | 114.25 mT / 1142 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Niniejsze dane są wynik symulacji fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MP 32x16x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5552 Gs
555.2 mT
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
mocny |
| 1 mm |
5202 Gs
520.2 mT
|
2.45 kg / 5.40 lbs
2448.8 g / 24.0 N
|
mocny |
| 2 mm |
4850 Gs
485.0 mT
|
2.13 kg / 4.69 lbs
2128.7 g / 20.9 N
|
mocny |
| 3 mm |
4504 Gs
450.4 mT
|
1.84 kg / 4.05 lbs
1836.3 g / 18.0 N
|
niskie ryzyko |
| 5 mm |
3849 Gs
384.9 mT
|
1.34 kg / 2.96 lbs
1340.5 g / 13.2 N
|
niskie ryzyko |
| 10 mm |
2513 Gs
251.3 mT
|
0.57 kg / 1.26 lbs
571.6 g / 5.6 N
|
niskie ryzyko |
| 15 mm |
1633 Gs
163.3 mT
|
0.24 kg / 0.53 lbs
241.2 g / 2.4 N
|
niskie ryzyko |
| 20 mm |
1087 Gs
108.7 mT
|
0.11 kg / 0.24 lbs
107.0 g / 1.0 N
|
niskie ryzyko |
| 30 mm |
535 Gs
53.5 mT
|
0.03 kg / 0.06 lbs
25.9 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
181 Gs
18.1 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 32x16x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
558.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
|
| 3 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
268.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 32x16x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 1.85 lbs
837.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
558.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.62 lbs
279.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 3.08 lbs
1395.0 g / 13.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 32x16x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.62 lbs
279.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.54 lbs
697.5 g / 6.8 N
|
| 2 mm |
|
1.40 kg / 3.08 lbs
1395.0 g / 13.7 N
|
| 3 mm |
|
2.09 kg / 4.61 lbs
2092.5 g / 20.5 N
|
| 5 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 10 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 11 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 12 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 32x16x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
OK |
| 40 °C | -2.2% |
2.73 kg / 6.02 lbs
2728.6 g / 26.8 N
|
OK |
| 60 °C | -4.4% |
2.67 kg / 5.88 lbs
2667.2 g / 26.2 N
|
OK |
| 80 °C | -6.6% |
2.61 kg / 5.74 lbs
2605.9 g / 25.6 N
|
|
| 100 °C | -28.8% |
1.99 kg / 4.38 lbs
1986.5 g / 19.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 32x16x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
128.78 kg / 283.90 lbs
6 014 Gs
|
19.32 kg / 42.59 lbs
19317 g / 189.5 N
|
N/A |
| 1 mm |
120.86 kg / 266.44 lbs
10 757 Gs
|
18.13 kg / 39.97 lbs
18128 g / 177.8 N
|
108.77 kg / 239.80 lbs
~0 Gs
|
| 2 mm |
113.03 kg / 249.19 lbs
10 403 Gs
|
16.95 kg / 37.38 lbs
16954 g / 166.3 N
|
101.73 kg / 224.27 lbs
~0 Gs
|
| 3 mm |
105.49 kg / 232.56 lbs
10 050 Gs
|
15.82 kg / 34.88 lbs
15823 g / 155.2 N
|
94.94 kg / 209.31 lbs
~0 Gs
|
| 5 mm |
91.34 kg / 201.37 lbs
9 352 Gs
|
13.70 kg / 30.21 lbs
13701 g / 134.4 N
|
82.21 kg / 181.23 lbs
~0 Gs
|
| 10 mm |
61.88 kg / 136.41 lbs
7 697 Gs
|
9.28 kg / 20.46 lbs
9281 g / 91.0 N
|
55.69 kg / 122.77 lbs
~0 Gs
|
| 20 mm |
26.38 kg / 58.16 lbs
5 026 Gs
|
3.96 kg / 8.72 lbs
3957 g / 38.8 N
|
23.74 kg / 52.35 lbs
~0 Gs
|
| 50 mm |
2.35 kg / 5.17 lbs
1 499 Gs
|
0.35 kg / 0.78 lbs
352 g / 3.5 N
|
2.11 kg / 4.66 lbs
~0 Gs
|
| 60 mm |
1.19 kg / 2.63 lbs
1 069 Gs
|
0.18 kg / 0.39 lbs
179 g / 1.8 N
|
1.07 kg / 2.37 lbs
~0 Gs
|
| 70 mm |
0.65 kg / 1.42 lbs
786 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 80 mm |
0.37 kg / 0.81 lbs
594 Gs
|
0.06 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.73 lbs
~0 Gs
|
| 90 mm |
0.22 kg / 0.49 lbs
459 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 100 mm |
0.14 kg / 0.30 lbs
362 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 32x16x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 32x16x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.21 km/h
(4.50 m/s)
|
0.14 J | |
| 30 mm |
25.19 km/h
(7.00 m/s)
|
0.33 J | |
| 50 mm |
32.36 km/h
(8.99 m/s)
|
0.55 J | |
| 100 mm |
45.73 km/h
(12.70 m/s)
|
1.09 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 32x16x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 32x16x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 808 Mx | 388.1 µWb |
| Współczynnik Pc | 0.90 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 32x16x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.79 kg | Standard |
| Woda (dno rzeki) |
3.19 kg
(+0.40 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.90
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- przy pionowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Urządzenia elektroniczne
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Uwaga: zadławienie
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
