MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030198
GTIN/EAN: 5906301812159
Średnica
32 mm [±0,1 mm]
Średnica wewnętrzna Ø
16 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.79 kg / 27.40 N
Indukcja magnetyczna
114.25 mT / 1142 Gs
Powłoka
[NiCuNi] nikiel
5.24 ZŁ z VAT / szt. + cena za transport
4.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 22 499 98 98
lub napisz poprzez
formularz zgłoszeniowy
na naszej stronie.
Siłę i wygląd magnesu wyliczysz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030198 |
| GTIN/EAN | 5906301812159 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 32 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 16 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.79 kg / 27.40 N |
| Indukcja magnetyczna ~ ? | 114.25 mT / 1142 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Poniższe wartości stanowią wynik analizy inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
MP 32x16x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5552 Gs
555.2 mT
|
2.79 kg / 2790.0 g
27.4 N
|
średnie ryzyko |
| 1 mm |
5202 Gs
520.2 mT
|
2.45 kg / 2448.8 g
24.0 N
|
średnie ryzyko |
| 2 mm |
4850 Gs
485.0 mT
|
2.13 kg / 2128.7 g
20.9 N
|
średnie ryzyko |
| 3 mm |
4504 Gs
450.4 mT
|
1.84 kg / 1836.3 g
18.0 N
|
niskie ryzyko |
| 5 mm |
3849 Gs
384.9 mT
|
1.34 kg / 1340.5 g
13.2 N
|
niskie ryzyko |
| 10 mm |
2513 Gs
251.3 mT
|
0.57 kg / 571.6 g
5.6 N
|
niskie ryzyko |
| 15 mm |
1633 Gs
163.3 mT
|
0.24 kg / 241.2 g
2.4 N
|
niskie ryzyko |
| 20 mm |
1087 Gs
108.7 mT
|
0.11 kg / 107.0 g
1.0 N
|
niskie ryzyko |
| 30 mm |
535 Gs
53.5 mT
|
0.03 kg / 25.9 g
0.3 N
|
niskie ryzyko |
| 50 mm |
181 Gs
18.1 mT
|
0.00 kg / 3.0 g
0.0 N
|
niskie ryzyko |
MP 32x16x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 558.0 g
5.5 N
|
| 1 mm | Stal (~0.2) |
0.49 kg / 490.0 g
4.8 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 426.0 g
4.2 N
|
| 3 mm | Stal (~0.2) |
0.37 kg / 368.0 g
3.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 268.0 g
2.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 114.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 32x16x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 837.0 g
8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 558.0 g
5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 279.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 1395.0 g
13.7 N
|
MP 32x16x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 279.0 g
2.7 N
|
| 1 mm |
|
0.70 kg / 697.5 g
6.8 N
|
| 2 mm |
|
1.40 kg / 1395.0 g
13.7 N
|
| 5 mm |
|
2.79 kg / 2790.0 g
27.4 N
|
| 10 mm |
|
2.79 kg / 2790.0 g
27.4 N
|
MP 32x16x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.79 kg / 2790.0 g
27.4 N
|
OK |
| 40 °C | -2.2% |
2.73 kg / 2728.6 g
26.8 N
|
OK |
| 60 °C | -4.4% |
2.67 kg / 2667.2 g
26.2 N
|
OK |
| 80 °C | -6.6% |
2.61 kg / 2605.9 g
25.6 N
|
|
| 100 °C | -28.8% |
1.99 kg / 1986.5 g
19.5 N
|
MP 32x16x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
128.78 kg / 128777 g
1263.3 N
6 014 Gs
|
N/A |
| 1 mm |
120.86 kg / 120855 g
1185.6 N
10 757 Gs
|
108.77 kg / 108770 g
1067.0 N
~0 Gs
|
| 2 mm |
113.03 kg / 113029 g
1108.8 N
10 403 Gs
|
101.73 kg / 101727 g
997.9 N
~0 Gs
|
| 3 mm |
105.49 kg / 105489 g
1034.8 N
10 050 Gs
|
94.94 kg / 94940 g
931.4 N
~0 Gs
|
| 5 mm |
91.34 kg / 91339 g
896.0 N
9 352 Gs
|
82.21 kg / 82205 g
806.4 N
~0 Gs
|
| 10 mm |
61.88 kg / 61875 g
607.0 N
7 697 Gs
|
55.69 kg / 55688 g
546.3 N
~0 Gs
|
| 20 mm |
26.38 kg / 26382 g
258.8 N
5 026 Gs
|
23.74 kg / 23744 g
232.9 N
~0 Gs
|
| 50 mm |
2.35 kg / 2347 g
23.0 N
1 499 Gs
|
2.11 kg / 2112 g
20.7 N
~0 Gs
|
MP 32x16x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
MP 32x16x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.21 km/h
(4.50 m/s)
|
0.14 J | |
| 30 mm |
25.19 km/h
(7.00 m/s)
|
0.33 J | |
| 50 mm |
32.36 km/h
(8.99 m/s)
|
0.55 J | |
| 100 mm |
45.73 km/h
(12.70 m/s)
|
1.09 J |
MP 32x16x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 32x16x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 808 Mx | 388.1 µWb |
| Współczynnik Pc | 0.90 | Wysoki (Stabilny) |
MP 32x16x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.79 kg | Standard |
| Woda (dno rzeki) |
3.19 kg
(+0.40 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.90
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z użyciem podłoża ze stali niskowęglowej, działającej jako zwora magnetyczna
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak powłok)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Karty i dyski
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Pył jest łatwopalny
Proszek generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Reakcje alergiczne
Pewna grupa użytkowników posiada uczulenie na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Zalecamy stosowanie rękawic bezlateksowych.
Moc przyciągania
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Wrażliwość na ciepło
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Kompas i GPS
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
