MP 12x5x2 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030498
Średnica
12 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.15 kg / 11.29 N
Indukcja magnetyczna
195.97 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
1.230 ZŁ z VAT / szt. + cena za transport
1.000 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz kłopot z wyborem?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz przez
formularz zapytania
na naszej stronie.
Moc a także kształt magnesu neodymowego przetestujesz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MP 12x5x2 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 12x5x2 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030498 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 12 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.15 kg / 11.29 N |
| Indukcja magnetyczna ~ ? | 195.97 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Poniższe dane są wynik symulacji matematycznej. Wartości bazują na modelach dla klasy NdFeB. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
MP 12x5x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6085 Gs
608.5 mT
|
1.15 kg / 1150.0 g
11.3 N
|
bezpieczny |
| 1 mm |
5082 Gs
508.2 mT
|
0.80 kg / 802.2 g
7.9 N
|
bezpieczny |
| 2 mm |
4147 Gs
414.7 mT
|
0.53 kg / 534.0 g
5.2 N
|
bezpieczny |
| 3 mm |
3340 Gs
334.0 mT
|
0.35 kg / 346.3 g
3.4 N
|
bezpieczny |
| 5 mm |
2152 Gs
215.2 mT
|
0.14 kg / 143.8 g
1.4 N
|
bezpieczny |
| 10 mm |
822 Gs
82.2 mT
|
0.02 kg / 21.0 g
0.2 N
|
bezpieczny |
| 15 mm |
394 Gs
39.4 mT
|
0.00 kg / 4.8 g
0.0 N
|
bezpieczny |
| 20 mm |
221 Gs
22.1 mT
|
0.00 kg / 1.5 g
0.0 N
|
bezpieczny |
| 30 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MP 12x5x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 1 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
| 2 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 3 mm | Stal (~0.2) |
0.07 kg / 70.0 g
0.7 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 12x5x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.35 kg / 345.0 g
3.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 230.0 g
2.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 115.0 g
1.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.58 kg / 575.0 g
5.6 N
|
MP 12x5x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 115.0 g
1.1 N
|
| 1 mm |
|
0.29 kg / 287.5 g
2.8 N
|
| 2 mm |
|
0.58 kg / 575.0 g
5.6 N
|
| 5 mm |
|
1.15 kg / 1150.0 g
11.3 N
|
| 10 mm |
|
1.15 kg / 1150.0 g
11.3 N
|
MP 12x5x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.15 kg / 1150.0 g
11.3 N
|
OK |
| 40 °C | -2.2% |
1.12 kg / 1124.7 g
11.0 N
|
OK |
| 60 °C | -4.4% |
1.10 kg / 1099.4 g
10.8 N
|
OK |
| 80 °C | -6.6% |
1.07 kg / 1074.1 g
10.5 N
|
|
| 100 °C | -28.8% |
0.82 kg / 818.8 g
8.0 N
|
MP 12x5x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
21.34 kg / 21338 g
209.3 N
6 163 Gs
|
N/A |
| 1 mm |
17.97 kg / 17966 g
176.2 N
11 168 Gs
|
16.17 kg / 16169 g
158.6 N
~0 Gs
|
| 2 mm |
14.88 kg / 14884 g
146.0 N
10 165 Gs
|
13.40 kg / 13396 g
131.4 N
~0 Gs
|
| 3 mm |
12.20 kg / 12197 g
119.7 N
9 202 Gs
|
10.98 kg / 10977 g
107.7 N
~0 Gs
|
| 5 mm |
8.00 kg / 7996 g
78.4 N
7 450 Gs
|
7.20 kg / 7197 g
70.6 N
~0 Gs
|
| 10 mm |
2.67 kg / 2669 g
26.2 N
4 304 Gs
|
2.40 kg / 2402 g
23.6 N
~0 Gs
|
| 20 mm |
0.39 kg / 389 g
3.8 N
1 644 Gs
|
0.35 kg / 350 g
3.4 N
~0 Gs
|
| 50 mm |
0.01 kg / 11 g
0.1 N
275 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
MP 12x5x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MP 12x5x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.23 km/h
(8.12 m/s)
|
0.05 J | |
| 30 mm |
50.07 km/h
(13.91 m/s)
|
0.14 J | |
| 50 mm |
64.63 km/h
(17.95 m/s)
|
0.23 J | |
| 100 mm |
91.40 km/h
(25.39 m/s)
|
0.45 J |
MP 12x5x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 12x5x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 503 Mx | 65.0 µWb |
| Współczynnik Pc | 1.34 | Wysoki (Stabilny) |
MP 12x5x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.15 kg | Standard |
| Woda (dno rzeki) |
1.32 kg
(+0.17 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne produkty
Wady oraz zalety magnesów z neodymu NdFeB.
Poza potężną wydajnością magnetyczną, te produkty oferują szereg innych zalet::
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
Moc magnesu została określona dla warunków idealnego styku, uwzględniającej:
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- przy bezpośrednim styku (bez farby)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
Na realną siłę oddziałują parametry środowiska pracy, m.in. (od najważniejszych):
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
* Udźwig wyznaczano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Wady oraz zalety magnesów z neodymu NdFeB.
Poza potężną wydajnością magnetyczną, te produkty oferują szereg innych zalet::
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
Moc magnesu została określona dla warunków idealnego styku, uwzględniającej:
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- przy bezpośrednim styku (bez farby)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
Na realną siłę oddziałują parametry środowiska pracy, m.in. (od najważniejszych):
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
* Udźwig wyznaczano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Ostrzeżenie dla alergików
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Potężne pole
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zakaz zabawy
Magnesy neodymowe nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Wpływ na zdrowie
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może zatrzymać pracę implantu.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Temperatura pracy
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Nośniki danych
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Zagrożenie!
Szukasz szczegółów? Sprawdź nasz artykuł: Czy magnesy są groźne?
