MP 12x5x2 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030498
Średnica
12 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.15 kg / 11.29 N
Indukcja magnetyczna
195.97 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
1.230 ZŁ z VAT / szt. + cena za transport
1.000 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub daj znać korzystając z
formularz
na stronie kontaktowej.
Masę a także kształt elementów magnetycznych sprawdzisz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry produktu - MP 12x5x2 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 12x5x2 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030498 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 12 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.15 kg / 11.29 N |
| Indukcja magnetyczna ~ ? | 195.97 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione wartości są bezpośredni efekt kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MP 12x5x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6085 Gs
608.5 mT
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
słaby uchwyt |
| 1 mm |
5082 Gs
508.2 mT
|
0.80 kg / 1.77 lbs
802.2 g / 7.9 N
|
słaby uchwyt |
| 2 mm |
4147 Gs
414.7 mT
|
0.53 kg / 1.18 lbs
534.0 g / 5.2 N
|
słaby uchwyt |
| 3 mm |
3340 Gs
334.0 mT
|
0.35 kg / 0.76 lbs
346.3 g / 3.4 N
|
słaby uchwyt |
| 5 mm |
2152 Gs
215.2 mT
|
0.14 kg / 0.32 lbs
143.8 g / 1.4 N
|
słaby uchwyt |
| 10 mm |
822 Gs
82.2 mT
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
394 Gs
39.4 mT
|
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
221 Gs
22.1 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 12x5x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 1 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 2 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 3 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 12x5x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.58 kg / 1.27 lbs
575.0 g / 5.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 12x5x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 0.25 lbs
115.0 g / 1.1 N
|
| 1 mm |
|
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
|
| 2 mm |
|
0.58 kg / 1.27 lbs
575.0 g / 5.6 N
|
| 3 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 5 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 10 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 11 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 12 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 12x5x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
OK |
| 40 °C | -2.2% |
1.12 kg / 2.48 lbs
1124.7 g / 11.0 N
|
OK |
| 60 °C | -4.4% |
1.10 kg / 2.42 lbs
1099.4 g / 10.8 N
|
OK |
| 80 °C | -6.6% |
1.07 kg / 2.37 lbs
1074.1 g / 10.5 N
|
|
| 100 °C | -28.8% |
0.82 kg / 1.81 lbs
818.8 g / 8.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 12x5x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.34 kg / 47.04 lbs
6 163 Gs
|
3.20 kg / 7.06 lbs
3201 g / 31.4 N
|
N/A |
| 1 mm |
17.97 kg / 39.61 lbs
11 168 Gs
|
2.69 kg / 5.94 lbs
2695 g / 26.4 N
|
16.17 kg / 35.65 lbs
~0 Gs
|
| 2 mm |
14.88 kg / 32.81 lbs
10 165 Gs
|
2.23 kg / 4.92 lbs
2233 g / 21.9 N
|
13.40 kg / 29.53 lbs
~0 Gs
|
| 3 mm |
12.20 kg / 26.89 lbs
9 202 Gs
|
1.83 kg / 4.03 lbs
1830 g / 17.9 N
|
10.98 kg / 24.20 lbs
~0 Gs
|
| 5 mm |
8.00 kg / 17.63 lbs
7 450 Gs
|
1.20 kg / 2.64 lbs
1199 g / 11.8 N
|
7.20 kg / 15.87 lbs
~0 Gs
|
| 10 mm |
2.67 kg / 5.88 lbs
4 304 Gs
|
0.40 kg / 0.88 lbs
400 g / 3.9 N
|
2.40 kg / 5.30 lbs
~0 Gs
|
| 20 mm |
0.39 kg / 0.86 lbs
1 644 Gs
|
0.06 kg / 0.13 lbs
58 g / 0.6 N
|
0.35 kg / 0.77 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
275 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
184 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
129 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
95 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 12x5x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 12x5x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.23 km/h
(8.12 m/s)
|
0.05 J | |
| 30 mm |
50.07 km/h
(13.91 m/s)
|
0.14 J | |
| 50 mm |
64.63 km/h
(17.95 m/s)
|
0.23 J | |
| 100 mm |
91.40 km/h
(25.39 m/s)
|
0.45 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 12x5x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 12x5x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 503 Mx | 65.0 µWb |
| Współczynnik Pc | 1.34 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 12x5x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.15 kg | Standard |
| Woda (dno rzeki) |
1.32 kg
(+0.17 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.34
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Dystans – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Bezpieczna praca przy magnesach neodymowych
Wrażliwość na ciepło
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zagrożenie fizyczne
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Kompas i GPS
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Pole magnetyczne a elektronika
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Tylko dla dorosłych
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
