MW 8x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010103
GTIN/EAN: 5906301811022
Średnica Ø
8 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.13 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.70 kg / 16.67 N
Indukcja magnetyczna
371.53 mT / 3715 Gs
Powłoka
[NiCuNi] nikiel
0.701 ZŁ z VAT / szt. + cena za transport
0.570 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie daj znać korzystając z
formularz
na stronie kontakt.
Moc a także formę magnesu neodymowego obliczysz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MW 8x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010103 |
| GTIN/EAN | 5906301811022 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.13 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.70 kg / 16.67 N |
| Indukcja magnetyczna ~ ? | 371.53 mT / 3715 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Poniższe informacje stanowią rezultat symulacji fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 8x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3712 Gs
371.2 mT
|
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
|
bezpieczny |
| 1 mm |
2880 Gs
288.0 mT
|
1.02 kg / 2.26 lbs
1023.3 g / 10.0 N
|
bezpieczny |
| 2 mm |
2069 Gs
206.9 mT
|
0.53 kg / 1.16 lbs
527.9 g / 5.2 N
|
bezpieczny |
| 3 mm |
1439 Gs
143.9 mT
|
0.26 kg / 0.56 lbs
255.3 g / 2.5 N
|
bezpieczny |
| 5 mm |
704 Gs
70.4 mT
|
0.06 kg / 0.13 lbs
61.1 g / 0.6 N
|
bezpieczny |
| 10 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.01 lbs
3.5 g / 0.0 N
|
bezpieczny |
| 15 mm |
62 Gs
6.2 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 20 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 8x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 1 mm | Stal (~0.2) |
0.20 kg / 0.45 lbs
204.0 g / 2.0 N
|
| 2 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 8x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.85 kg / 1.87 lbs
850.0 g / 8.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 8x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 1 mm |
|
0.43 kg / 0.94 lbs
425.0 g / 4.2 N
|
| 2 mm |
|
0.85 kg / 1.87 lbs
850.0 g / 8.3 N
|
| 3 mm |
|
1.28 kg / 2.81 lbs
1275.0 g / 12.5 N
|
| 5 mm |
|
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
|
| 10 mm |
|
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
|
| 11 mm |
|
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
|
| 12 mm |
|
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 8x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
|
OK |
| 40 °C | -2.2% |
1.66 kg / 3.67 lbs
1662.6 g / 16.3 N
|
OK |
| 60 °C | -4.4% |
1.63 kg / 3.58 lbs
1625.2 g / 15.9 N
|
|
| 80 °C | -6.6% |
1.59 kg / 3.50 lbs
1587.8 g / 15.6 N
|
|
| 100 °C | -28.8% |
1.21 kg / 2.67 lbs
1210.4 g / 11.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 8x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.27 kg / 9.42 lbs
5 146 Gs
|
0.64 kg / 1.41 lbs
641 g / 6.3 N
|
N/A |
| 1 mm |
3.40 kg / 7.50 lbs
6 627 Gs
|
0.51 kg / 1.13 lbs
510 g / 5.0 N
|
3.06 kg / 6.75 lbs
~0 Gs
|
| 2 mm |
2.57 kg / 5.67 lbs
5 761 Gs
|
0.39 kg / 0.85 lbs
386 g / 3.8 N
|
2.31 kg / 5.10 lbs
~0 Gs
|
| 3 mm |
1.87 kg / 4.12 lbs
4 914 Gs
|
0.28 kg / 0.62 lbs
281 g / 2.8 N
|
1.68 kg / 3.71 lbs
~0 Gs
|
| 5 mm |
0.93 kg / 2.04 lbs
3 456 Gs
|
0.14 kg / 0.31 lbs
139 g / 1.4 N
|
0.83 kg / 1.84 lbs
~0 Gs
|
| 10 mm |
0.15 kg / 0.34 lbs
1 408 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
339 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 8x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 8x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.17 km/h
(10.88 m/s)
|
0.07 J | |
| 30 mm |
67.75 km/h
(18.82 m/s)
|
0.20 J | |
| 50 mm |
87.47 km/h
(24.30 m/s)
|
0.33 J | |
| 100 mm |
123.70 km/h
(34.36 m/s)
|
0.67 J |
Tabela 9: Odporność na korozję
MW 8x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 8x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 946 Mx | 19.5 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 8x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.70 kg | Standard |
| Woda (dno rzeki) |
1.95 kg
(+0.25 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
UMP 94x28 [3xM10] GW F300 GOLD Lina / N38 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o grubości przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (bez powłok)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Implanty medyczne
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Ryzyko połknięcia
Magnesy neodymowe to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Siła neodymu
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Niszczenie danych
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca działanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Alergia na nikiel
Część populacji ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować zaczerwienienie skóry. Zalecamy używanie rękawiczek ochronnych.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Łatwopalność
Pył powstający podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
