MW 70x60 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010098
GTIN/EAN: 5906301810971
Średnica Ø
70 mm [±0,1 mm]
Wysokość
60 mm [±0,1 mm]
Waga
1731.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
163.93 kg / 1608.16 N
Indukcja magnetyczna
535.45 mT / 5354 Gs
Powłoka
[NiCuNi] nikiel
630.01 ZŁ z VAT / szt. + cena za transport
512.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo zostaw wiadomość przez
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig oraz kształt magnesów neodymowych obliczysz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 70x60 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x60 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010098 |
| GTIN/EAN | 5906301810971 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 60 mm [±0,1 mm] |
| Waga | 1731.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 163.93 kg / 1608.16 N |
| Indukcja magnetyczna ~ ? | 535.45 mT / 5354 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze dane są bezpośredni efekt symulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 70x60 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5354 Gs
535.4 mT
|
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
krytyczny poziom |
| 1 mm |
5201 Gs
520.1 mT
|
154.68 kg / 341.01 lbs
154677.8 g / 1517.4 N
|
krytyczny poziom |
| 2 mm |
5045 Gs
504.5 mT
|
145.58 kg / 320.96 lbs
145583.5 g / 1428.2 N
|
krytyczny poziom |
| 3 mm |
4890 Gs
489.0 mT
|
136.77 kg / 301.52 lbs
136769.5 g / 1341.7 N
|
krytyczny poziom |
| 5 mm |
4582 Gs
458.2 mT
|
120.07 kg / 264.72 lbs
120074.6 g / 1177.9 N
|
krytyczny poziom |
| 10 mm |
3842 Gs
384.2 mT
|
84.43 kg / 186.13 lbs
84425.8 g / 828.2 N
|
krytyczny poziom |
| 15 mm |
3176 Gs
317.6 mT
|
57.69 kg / 127.18 lbs
57688.8 g / 565.9 N
|
krytyczny poziom |
| 20 mm |
2604 Gs
260.4 mT
|
38.78 kg / 85.50 lbs
38782.9 g / 380.5 N
|
krytyczny poziom |
| 30 mm |
1744 Gs
174.4 mT
|
17.39 kg / 38.33 lbs
17385.0 g / 170.5 N
|
krytyczny poziom |
| 50 mm |
829 Gs
82.9 mT
|
3.93 kg / 8.66 lbs
3929.4 g / 38.5 N
|
mocny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 70x60 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
32.79 kg / 72.28 lbs
32786.0 g / 321.6 N
|
| 1 mm | Stal (~0.2) |
30.94 kg / 68.20 lbs
30936.0 g / 303.5 N
|
| 2 mm | Stal (~0.2) |
29.12 kg / 64.19 lbs
29116.0 g / 285.6 N
|
| 3 mm | Stal (~0.2) |
27.35 kg / 60.31 lbs
27354.0 g / 268.3 N
|
| 5 mm | Stal (~0.2) |
24.01 kg / 52.94 lbs
24014.0 g / 235.6 N
|
| 10 mm | Stal (~0.2) |
16.89 kg / 37.23 lbs
16886.0 g / 165.7 N
|
| 15 mm | Stal (~0.2) |
11.54 kg / 25.44 lbs
11538.0 g / 113.2 N
|
| 20 mm | Stal (~0.2) |
7.76 kg / 17.10 lbs
7756.0 g / 76.1 N
|
| 30 mm | Stal (~0.2) |
3.48 kg / 7.67 lbs
3478.0 g / 34.1 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 1.73 lbs
786.0 g / 7.7 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 70x60 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
49.18 kg / 108.42 lbs
49179.0 g / 482.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
32.79 kg / 72.28 lbs
32786.0 g / 321.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.39 kg / 36.14 lbs
16393.0 g / 160.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
81.97 kg / 180.70 lbs
81965.0 g / 804.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 70x60 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.46 kg / 12.05 lbs
5464.3 g / 53.6 N
|
| 1 mm |
|
13.66 kg / 30.12 lbs
13660.8 g / 134.0 N
|
| 2 mm |
|
27.32 kg / 60.23 lbs
27321.7 g / 268.0 N
|
| 3 mm |
|
40.98 kg / 90.35 lbs
40982.5 g / 402.0 N
|
| 5 mm |
|
68.30 kg / 150.58 lbs
68304.2 g / 670.1 N
|
| 10 mm |
|
136.61 kg / 301.17 lbs
136608.3 g / 1340.1 N
|
| 11 mm |
|
150.27 kg / 331.29 lbs
150269.2 g / 1474.1 N
|
| 12 mm |
|
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 70x60 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
OK |
| 40 °C | -2.2% |
160.32 kg / 353.45 lbs
160323.5 g / 1572.8 N
|
OK |
| 60 °C | -4.4% |
156.72 kg / 345.50 lbs
156717.1 g / 1537.4 N
|
OK |
| 80 °C | -6.6% |
153.11 kg / 337.55 lbs
153110.6 g / 1502.0 N
|
|
| 100 °C | -28.8% |
116.72 kg / 257.32 lbs
116718.2 g / 1145.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 70x60 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
680.08 kg / 1499.31 lbs
5 950 Gs
|
102.01 kg / 224.90 lbs
102012 g / 1000.7 N
|
N/A |
| 1 mm |
660.96 kg / 1457.16 lbs
10 556 Gs
|
99.14 kg / 218.57 lbs
99144 g / 972.6 N
|
594.86 kg / 1311.45 lbs
~0 Gs
|
| 2 mm |
641.69 kg / 1414.69 lbs
10 401 Gs
|
96.25 kg / 212.20 lbs
96254 g / 944.3 N
|
577.52 kg / 1273.22 lbs
~0 Gs
|
| 3 mm |
622.69 kg / 1372.80 lbs
10 246 Gs
|
93.40 kg / 205.92 lbs
93404 g / 916.3 N
|
560.42 kg / 1235.52 lbs
~0 Gs
|
| 5 mm |
585.53 kg / 1290.87 lbs
9 936 Gs
|
87.83 kg / 193.63 lbs
87830 g / 861.6 N
|
526.98 kg / 1161.79 lbs
~0 Gs
|
| 10 mm |
498.14 kg / 1098.21 lbs
9 164 Gs
|
74.72 kg / 164.73 lbs
74721 g / 733.0 N
|
448.33 kg / 988.39 lbs
~0 Gs
|
| 20 mm |
350.25 kg / 772.16 lbs
7 684 Gs
|
52.54 kg / 115.82 lbs
52537 g / 515.4 N
|
315.22 kg / 694.95 lbs
~0 Gs
|
| 50 mm |
107.57 kg / 237.16 lbs
4 259 Gs
|
16.14 kg / 35.57 lbs
16136 g / 158.3 N
|
96.82 kg / 213.44 lbs
~0 Gs
|
| 60 mm |
72.12 kg / 159.00 lbs
3 487 Gs
|
10.82 kg / 23.85 lbs
10818 g / 106.1 N
|
64.91 kg / 143.10 lbs
~0 Gs
|
| 70 mm |
48.77 kg / 107.51 lbs
2 867 Gs
|
7.31 kg / 16.13 lbs
7315 g / 71.8 N
|
43.89 kg / 96.76 lbs
~0 Gs
|
| 80 mm |
33.37 kg / 73.57 lbs
2 372 Gs
|
5.01 kg / 11.04 lbs
5005 g / 49.1 N
|
30.03 kg / 66.21 lbs
~0 Gs
|
| 90 mm |
23.15 kg / 51.04 lbs
1 976 Gs
|
3.47 kg / 7.66 lbs
3473 g / 34.1 N
|
20.84 kg / 45.94 lbs
~0 Gs
|
| 100 mm |
16.30 kg / 35.94 lbs
1 658 Gs
|
2.45 kg / 5.39 lbs
2445 g / 24.0 N
|
14.67 kg / 32.34 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 70x60 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 42.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 33.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 25.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 19.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 18.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 70x60 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.58 km/h
(3.49 m/s)
|
10.57 J | |
| 30 mm |
18.09 km/h
(5.02 m/s)
|
21.86 J | |
| 50 mm |
22.27 km/h
(6.19 m/s)
|
33.13 J | |
| 100 mm |
31.06 km/h
(8.63 m/s)
|
64.44 J |
Tabela 9: Odporność na korozję
MW 70x60 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 70x60 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 209 626 Mx | 2096.3 µWb |
| Współczynnik Pc | 0.82 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 70x60 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 163.93 kg | Standard |
| Woda (dno rzeki) |
187.70 kg
(+23.77 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.82
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (metal do metalu)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (między magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Bezpieczna praca
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Wpływ na smartfony
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Nadwrażliwość na metale
Część populacji posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może skutkować silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
Limity termiczne
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
