MW 70x60 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010098
GTIN/EAN: 5906301810971
Średnica Ø
70 mm [±0,1 mm]
Wysokość
60 mm [±0,1 mm]
Waga
1731.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
163.93 kg / 1608.16 N
Indukcja magnetyczna
535.45 mT / 5354 Gs
Powłoka
[NiCuNi] nikiel
630.01 ZŁ z VAT / szt. + cena za transport
512.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub zostaw wiadomość korzystając z
formularz zapytania
na naszej stronie.
Masę oraz formę magnesu neodymowego przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 70x60 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x60 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010098 |
| GTIN/EAN | 5906301810971 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 60 mm [±0,1 mm] |
| Waga | 1731.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 163.93 kg / 1608.16 N |
| Indukcja magnetyczna ~ ? | 535.45 mT / 5354 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione dane stanowią rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 70x60 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5354 Gs
535.4 mT
|
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
krytyczny poziom |
| 1 mm |
5201 Gs
520.1 mT
|
154.68 kg / 341.01 lbs
154677.8 g / 1517.4 N
|
krytyczny poziom |
| 2 mm |
5045 Gs
504.5 mT
|
145.58 kg / 320.96 lbs
145583.5 g / 1428.2 N
|
krytyczny poziom |
| 3 mm |
4890 Gs
489.0 mT
|
136.77 kg / 301.52 lbs
136769.5 g / 1341.7 N
|
krytyczny poziom |
| 5 mm |
4582 Gs
458.2 mT
|
120.07 kg / 264.72 lbs
120074.6 g / 1177.9 N
|
krytyczny poziom |
| 10 mm |
3842 Gs
384.2 mT
|
84.43 kg / 186.13 lbs
84425.8 g / 828.2 N
|
krytyczny poziom |
| 15 mm |
3176 Gs
317.6 mT
|
57.69 kg / 127.18 lbs
57688.8 g / 565.9 N
|
krytyczny poziom |
| 20 mm |
2604 Gs
260.4 mT
|
38.78 kg / 85.50 lbs
38782.9 g / 380.5 N
|
krytyczny poziom |
| 30 mm |
1744 Gs
174.4 mT
|
17.39 kg / 38.33 lbs
17385.0 g / 170.5 N
|
krytyczny poziom |
| 50 mm |
829 Gs
82.9 mT
|
3.93 kg / 8.66 lbs
3929.4 g / 38.5 N
|
mocny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 70x60 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
32.79 kg / 72.28 lbs
32786.0 g / 321.6 N
|
| 1 mm | Stal (~0.2) |
30.94 kg / 68.20 lbs
30936.0 g / 303.5 N
|
| 2 mm | Stal (~0.2) |
29.12 kg / 64.19 lbs
29116.0 g / 285.6 N
|
| 3 mm | Stal (~0.2) |
27.35 kg / 60.31 lbs
27354.0 g / 268.3 N
|
| 5 mm | Stal (~0.2) |
24.01 kg / 52.94 lbs
24014.0 g / 235.6 N
|
| 10 mm | Stal (~0.2) |
16.89 kg / 37.23 lbs
16886.0 g / 165.7 N
|
| 15 mm | Stal (~0.2) |
11.54 kg / 25.44 lbs
11538.0 g / 113.2 N
|
| 20 mm | Stal (~0.2) |
7.76 kg / 17.10 lbs
7756.0 g / 76.1 N
|
| 30 mm | Stal (~0.2) |
3.48 kg / 7.67 lbs
3478.0 g / 34.1 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 1.73 lbs
786.0 g / 7.7 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 70x60 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
49.18 kg / 108.42 lbs
49179.0 g / 482.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
32.79 kg / 72.28 lbs
32786.0 g / 321.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.39 kg / 36.14 lbs
16393.0 g / 160.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
81.97 kg / 180.70 lbs
81965.0 g / 804.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 70x60 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.46 kg / 12.05 lbs
5464.3 g / 53.6 N
|
| 1 mm |
|
13.66 kg / 30.12 lbs
13660.8 g / 134.0 N
|
| 2 mm |
|
27.32 kg / 60.23 lbs
27321.7 g / 268.0 N
|
| 3 mm |
|
40.98 kg / 90.35 lbs
40982.5 g / 402.0 N
|
| 5 mm |
|
68.30 kg / 150.58 lbs
68304.2 g / 670.1 N
|
| 10 mm |
|
136.61 kg / 301.17 lbs
136608.3 g / 1340.1 N
|
| 11 mm |
|
150.27 kg / 331.29 lbs
150269.2 g / 1474.1 N
|
| 12 mm |
|
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 70x60 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
OK |
| 40 °C | -2.2% |
160.32 kg / 353.45 lbs
160323.5 g / 1572.8 N
|
OK |
| 60 °C | -4.4% |
156.72 kg / 345.50 lbs
156717.1 g / 1537.4 N
|
OK |
| 80 °C | -6.6% |
153.11 kg / 337.55 lbs
153110.6 g / 1502.0 N
|
|
| 100 °C | -28.8% |
116.72 kg / 257.32 lbs
116718.2 g / 1145.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 70x60 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
680.08 kg / 1499.31 lbs
5 950 Gs
|
102.01 kg / 224.90 lbs
102012 g / 1000.7 N
|
N/A |
| 1 mm |
660.96 kg / 1457.16 lbs
10 556 Gs
|
99.14 kg / 218.57 lbs
99144 g / 972.6 N
|
594.86 kg / 1311.45 lbs
~0 Gs
|
| 2 mm |
641.69 kg / 1414.69 lbs
10 401 Gs
|
96.25 kg / 212.20 lbs
96254 g / 944.3 N
|
577.52 kg / 1273.22 lbs
~0 Gs
|
| 3 mm |
622.69 kg / 1372.80 lbs
10 246 Gs
|
93.40 kg / 205.92 lbs
93404 g / 916.3 N
|
560.42 kg / 1235.52 lbs
~0 Gs
|
| 5 mm |
585.53 kg / 1290.87 lbs
9 936 Gs
|
87.83 kg / 193.63 lbs
87830 g / 861.6 N
|
526.98 kg / 1161.79 lbs
~0 Gs
|
| 10 mm |
498.14 kg / 1098.21 lbs
9 164 Gs
|
74.72 kg / 164.73 lbs
74721 g / 733.0 N
|
448.33 kg / 988.39 lbs
~0 Gs
|
| 20 mm |
350.25 kg / 772.16 lbs
7 684 Gs
|
52.54 kg / 115.82 lbs
52537 g / 515.4 N
|
315.22 kg / 694.95 lbs
~0 Gs
|
| 50 mm |
107.57 kg / 237.16 lbs
4 259 Gs
|
16.14 kg / 35.57 lbs
16136 g / 158.3 N
|
96.82 kg / 213.44 lbs
~0 Gs
|
| 60 mm |
72.12 kg / 159.00 lbs
3 487 Gs
|
10.82 kg / 23.85 lbs
10818 g / 106.1 N
|
64.91 kg / 143.10 lbs
~0 Gs
|
| 70 mm |
48.77 kg / 107.51 lbs
2 867 Gs
|
7.31 kg / 16.13 lbs
7315 g / 71.8 N
|
43.89 kg / 96.76 lbs
~0 Gs
|
| 80 mm |
33.37 kg / 73.57 lbs
2 372 Gs
|
5.01 kg / 11.04 lbs
5005 g / 49.1 N
|
30.03 kg / 66.21 lbs
~0 Gs
|
| 90 mm |
23.15 kg / 51.04 lbs
1 976 Gs
|
3.47 kg / 7.66 lbs
3473 g / 34.1 N
|
20.84 kg / 45.94 lbs
~0 Gs
|
| 100 mm |
16.30 kg / 35.94 lbs
1 658 Gs
|
2.45 kg / 5.39 lbs
2445 g / 24.0 N
|
14.67 kg / 32.34 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 70x60 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 42.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 33.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 25.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 19.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 18.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 70x60 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.58 km/h
(3.49 m/s)
|
10.57 J | |
| 30 mm |
18.09 km/h
(5.02 m/s)
|
21.86 J | |
| 50 mm |
22.27 km/h
(6.19 m/s)
|
33.13 J | |
| 100 mm |
31.06 km/h
(8.63 m/s)
|
64.44 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 70x60 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 70x60 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 209 626 Mx | 2096.3 µWb |
| Współczynnik Pc | 0.82 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 70x60 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 163.93 kg | Standard |
| Woda (dno rzeki) |
187.70 kg
(+23.77 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.82
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z wykorzystaniem blachy ze miękkiej stali, działającej jako idealny przewodnik strumienia
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Ostrzeżenie dla sercowców
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Łatwopalność
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Siła neodymu
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Kompas i GPS
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Karty i dyski
Unikaj zbliżania magnesów do portfela, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
