MW 5x7 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010090
GTIN/EAN: 5906301810896
Średnica Ø
5 mm [±0,1 mm]
Wysokość
7 mm [±0,1 mm]
Waga
1.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.67 kg / 6.60 N
Indukcja magnetyczna
582.40 mT / 5824 Gs
Powłoka
[NiCuNi] nikiel
0.726 ZŁ z VAT / szt. + cena za transport
0.590 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz przez
formularz zapytania
na stronie kontaktowej.
Siłę oraz budowę magnesów neodymowych wyliczysz w naszym
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MW 5x7 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 5x7 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010090 |
| GTIN/EAN | 5906301810896 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 7 mm [±0,1 mm] |
| Waga | 1.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.67 kg / 6.60 N |
| Indukcja magnetyczna ~ ? | 582.40 mT / 5824 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - parametry techniczne
Poniższe dane stanowią rezultat analizy fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MW 5x7 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5815 Gs
581.5 mT
|
0.67 kg / 670.0 g
6.6 N
|
słaby uchwyt |
| 1 mm |
3615 Gs
361.5 mT
|
0.26 kg / 259.0 g
2.5 N
|
słaby uchwyt |
| 2 mm |
2101 Gs
210.1 mT
|
0.09 kg / 87.4 g
0.9 N
|
słaby uchwyt |
| 3 mm |
1252 Gs
125.2 mT
|
0.03 kg / 31.1 g
0.3 N
|
słaby uchwyt |
| 5 mm |
524 Gs
52.4 mT
|
0.01 kg / 5.4 g
0.1 N
|
słaby uchwyt |
| 10 mm |
119 Gs
11.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 15 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 5x7 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.13 kg / 134.0 g
1.3 N
|
| 1 mm | Stal (~0.2) |
0.05 kg / 52.0 g
0.5 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 5x7 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.20 kg / 201.0 g
2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.13 kg / 134.0 g
1.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 67.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.34 kg / 335.0 g
3.3 N
|
MW 5x7 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 67.0 g
0.7 N
|
| 1 mm |
|
0.17 kg / 167.5 g
1.6 N
|
| 2 mm |
|
0.34 kg / 335.0 g
3.3 N
|
| 5 mm |
|
0.67 kg / 670.0 g
6.6 N
|
| 10 mm |
|
0.67 kg / 670.0 g
6.6 N
|
MW 5x7 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.67 kg / 670.0 g
6.6 N
|
OK |
| 40 °C | -2.2% |
0.66 kg / 655.3 g
6.4 N
|
OK |
| 60 °C | -4.4% |
0.64 kg / 640.5 g
6.3 N
|
OK |
| 80 °C | -6.6% |
0.63 kg / 625.8 g
6.1 N
|
|
| 100 °C | -28.8% |
0.48 kg / 477.0 g
4.7 N
|
MW 5x7 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.09 kg / 4093 g
40.2 N
6 079 Gs
|
N/A |
| 1 mm |
2.64 kg / 2635 g
25.9 N
9 332 Gs
|
2.37 kg / 2372 g
23.3 N
~0 Gs
|
| 2 mm |
1.58 kg / 1582 g
15.5 N
7 230 Gs
|
1.42 kg / 1424 g
14.0 N
~0 Gs
|
| 3 mm |
0.92 kg / 921 g
9.0 N
5 516 Gs
|
0.83 kg / 829 g
8.1 N
~0 Gs
|
| 5 mm |
0.31 kg / 314 g
3.1 N
3 224 Gs
|
0.28 kg / 283 g
2.8 N
~0 Gs
|
| 10 mm |
0.03 kg / 33 g
0.3 N
1 048 Gs
|
0.03 kg / 30 g
0.3 N
~0 Gs
|
| 20 mm |
0.00 kg / 2 g
0.0 N
238 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
24 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 5x7 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 5x7 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.73 km/h
(7.15 m/s)
|
0.03 J | |
| 30 mm |
44.55 km/h
(12.38 m/s)
|
0.08 J | |
| 50 mm |
57.52 km/h
(15.98 m/s)
|
0.13 J | |
| 100 mm |
81.34 km/h
(22.59 m/s)
|
0.26 J |
MW 5x7 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 5x7 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 219 Mx | 12.2 µWb |
| Współczynnik Pc | 1.05 | Wysoki (Stabilny) |
MW 5x7 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.67 kg | Standard |
| Woda (dno rzeki) |
0.77 kg
(+0.10 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.05
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- o idealnie gładkiej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Utrata mocy w cieple
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Niszczenie danych
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Rozprysk materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie fizyczne
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Ryzyko uczulenia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie dla najmłodszych
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
