Silne magnesy neodymowe: płytkowe i walcowe

Szukasz potężnej mocy w małym rozmiarze? Mamy w ofercie szeroki wybór magnesów o różnych kształtach i wymiarach. Są one idealne do zastosowań domowych, warsztatu oraz zadań przemysłowych. Sprawdź naszą ofertę w naszym magazynie.

poznaj cennik i wymiary

Sprzęt dla poszukiwaczy skarbów

Odkryj pasję polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w trudnych warunkach wodnych.

znajdź swój magnes do wody

Profesjonalne uchwyty z gwintem

Niezawodne rozwiązania do mocowania bezinwazyjnego. Uchwyty z gwintem (M8, M10, M12) zapewniają szybkie usprawnienie pracy na magazynach. Idealnie nadają się przy mocowaniu oświetlenia, czujników oraz banerów.

zobacz zastosowania przemysłowe

🚚 Zamów do 14:00 – wyślemy tego samego dnia!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 5x7 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010090

GTIN/EAN: 5906301810896

5.00

Średnica Ø

5 mm [±0,1 mm]

Wysokość

7 mm [±0,1 mm]

Waga

1.03 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.67 kg / 6.60 N

Indukcja magnetyczna

582.40 mT / 5824 Gs

Powłoka

[NiCuNi] nikiel

0.726 z VAT / szt. + cena za transport

0.590 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.590 ZŁ
0.726 ZŁ
cena od 1100 szt.
0.555 ZŁ
0.682 ZŁ
cena od 4300 szt.
0.519 ZŁ
0.639 ZŁ
Chcesz się targować?

Zadzwoń już teraz +48 888 99 98 98 alternatywnie napisz przez formularz zapytania na stronie kontaktowej.
Siłę oraz budowę magnesów neodymowych wyliczysz w naszym kalkulatorze magnetycznym.

Zamów do 14:00, a wyślemy dziś!

MW 5x7 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka MW 5x7 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010090
GTIN/EAN 5906301810896
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 5 mm [±0,1 mm]
Wysokość 7 mm [±0,1 mm]
Waga 1.03 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.67 kg / 6.60 N
Indukcja magnetyczna ~ ? 582.40 mT / 5824 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 5x7 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Modelowanie techniczna magnesu - parametry techniczne

Poniższe dane stanowią rezultat analizy fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 5x7 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 5815 Gs
581.5 mT
0.67 kg / 670.0 g
6.6 N
słaby uchwyt
1 mm 3615 Gs
361.5 mT
0.26 kg / 259.0 g
2.5 N
słaby uchwyt
2 mm 2101 Gs
210.1 mT
0.09 kg / 87.4 g
0.9 N
słaby uchwyt
3 mm 1252 Gs
125.2 mT
0.03 kg / 31.1 g
0.3 N
słaby uchwyt
5 mm 524 Gs
52.4 mT
0.01 kg / 5.4 g
0.1 N
słaby uchwyt
10 mm 119 Gs
11.9 mT
0.00 kg / 0.3 g
0.0 N
słaby uchwyt
15 mm 45 Gs
4.5 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
20 mm 21 Gs
2.1 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
30 mm 7 Gs
0.7 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
50 mm 2 Gs
0.2 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 5x7 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.13 kg / 134.0 g
1.3 N
1 mm Stal (~0.2) 0.05 kg / 52.0 g
0.5 N
2 mm Stal (~0.2) 0.02 kg / 18.0 g
0.2 N
3 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
5 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 5x7 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.20 kg / 201.0 g
2.0 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.13 kg / 134.0 g
1.3 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.07 kg / 67.0 g
0.7 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.34 kg / 335.0 g
3.3 N
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 5x7 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.07 kg / 67.0 g
0.7 N
1 mm
25%
0.17 kg / 167.5 g
1.6 N
2 mm
50%
0.34 kg / 335.0 g
3.3 N
5 mm
100%
0.67 kg / 670.0 g
6.6 N
10 mm
100%
0.67 kg / 670.0 g
6.6 N
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 5x7 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 0.67 kg / 670.0 g
6.6 N
OK
40 °C -2.2% 0.66 kg / 655.3 g
6.4 N
OK
60 °C -4.4% 0.64 kg / 640.5 g
6.3 N
OK
80 °C -6.6% 0.63 kg / 625.8 g
6.1 N
100 °C -28.8% 0.48 kg / 477.0 g
4.7 N
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 5x7 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 4.09 kg / 4093 g
40.2 N
6 079 Gs
N/A
1 mm 2.64 kg / 2635 g
25.9 N
9 332 Gs
2.37 kg / 2372 g
23.3 N
~0 Gs
2 mm 1.58 kg / 1582 g
15.5 N
7 230 Gs
1.42 kg / 1424 g
14.0 N
~0 Gs
3 mm 0.92 kg / 921 g
9.0 N
5 516 Gs
0.83 kg / 829 g
8.1 N
~0 Gs
5 mm 0.31 kg / 314 g
3.1 N
3 224 Gs
0.28 kg / 283 g
2.8 N
~0 Gs
10 mm 0.03 kg / 33 g
0.3 N
1 048 Gs
0.03 kg / 30 g
0.3 N
~0 Gs
20 mm 0.00 kg / 2 g
0.0 N
238 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
24 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 5x7 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.0 cm
Czasomierz 20 Gs (2.0 mT) 2.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 2.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 5x7 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 25.73 km/h
(7.15 m/s)
0.03 J
30 mm 44.55 km/h
(12.38 m/s)
0.08 J
50 mm 57.52 km/h
(15.98 m/s)
0.13 J
100 mm 81.34 km/h
(22.59 m/s)
0.26 J
Tabela 9: Trwałość powłoki antykorozyjnej
MW 5x7 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Tabela 10: Dane elektryczne (Pc)
MW 5x7 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 219 Mx 12.2 µWb
Współczynnik Pc 1.05 Wysoki (Stabilny)
Tabela 11: Zastosowanie podwodne
MW 5x7 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.67 kg Standard
Woda (dno rzeki) 0.77 kg
(+0.10 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.

2. Efektywność, a grubość stali

*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.

3. Wytrzymałość temperaturowa

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.05

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010090-2025
Kalkulator miar
Udźwig magnesu

Indukcja magnetyczna

Inne propozycje

Oferowany produkt to niezwykle mocny magnes w kształcie walca, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø5x7 mm gwarantuje najwyższą gęstość energii. Komponent MW 5x7 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 0.67 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem sprawdza się w modelarstwie, zaawansowanej robotyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki dużej mocy 6.60 N przy wadze zaledwie 1.03 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 5,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy N38 są odpowiednie do większości zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø5x7), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø5x7 mm, co przy wadze 1.03 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 6.60 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 1.03 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 5 mm. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety i wady neodymowych magnesów Nd2Fe14B.

Korzyści
Warto zwrócić uwagę, że obok ekstremalnej siły, produkty te wyróżniają się następującymi zaletami:
  • Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
  • Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
  • Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
  • Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
Warto znać też słabe strony magnesów neodymowych:
  • Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
  • Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.

Parametry udźwigu

Wytrzymałość magnetyczna na maksimum – od czego zależy?
Siła oderwania została wyznaczona dla warunków idealnego styku, obejmującej:
  • przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • której grubość wynosi ok. 10 mm
  • o idealnie gładkiej powierzchni kontaktu
  • bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
  • dla siły działającej pod kątem prostym (w osi magnesu)
  • w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
W praktyce, rzeczywisty udźwig jest determinowana przez kilku kluczowych aspektów, uszeregowanych od najbardziej istotnych:
  • Odstęp (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
  • Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
  • Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
  • Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
  • Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
  • Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.

Ostrzeżenia
Rozruszniki serca

Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.

Utrata mocy w cieple

Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.

Moc przyciągania

Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.

Niszczenie danych

Nie zbliżaj magnesów do portfela, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Rozprysk materiału

Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.

Samozapłon

Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.

Zagrożenie fizyczne

Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa silne magnesy.

Ryzyko uczulenia

Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.

Zagrożenie dla najmłodszych

Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Zakłócenia GPS i telefonów

Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.

Safety First! Więcej informacji o ryzyku w artykule: Niebezpieczeństwo pracy z magnesem.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98