MW 55x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010081
GTIN/EAN: 5906301810803
Średnica Ø
55 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
445.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
92.25 kg / 904.94 N
Indukcja magnetyczna
416.97 mT / 4170 Gs
Powłoka
[NiCuNi] nikiel
154.21 ZŁ z VAT / szt. + cena za transport
125.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie pisz przez
nasz formularz online
w sekcji kontakt.
Parametry oraz formę magnesu zobaczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 55x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 55x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010081 |
| GTIN/EAN | 5906301810803 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 55 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 445.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 92.25 kg / 904.94 N |
| Indukcja magnetyczna ~ ? | 416.97 mT / 4170 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione wartości są wynik symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 55x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4169 Gs
416.9 mT
|
92.25 kg / 92250.0 g
905.0 N
|
niebezpieczny! |
| 1 mm |
4034 Gs
403.4 mT
|
86.37 kg / 86369.8 g
847.3 N
|
niebezpieczny! |
| 2 mm |
3894 Gs
389.4 mT
|
80.47 kg / 80469.7 g
789.4 N
|
niebezpieczny! |
| 3 mm |
3751 Gs
375.1 mT
|
74.67 kg / 74670.6 g
732.5 N
|
niebezpieczny! |
| 5 mm |
3461 Gs
346.1 mT
|
63.58 kg / 63580.6 g
623.7 N
|
niebezpieczny! |
| 10 mm |
2756 Gs
275.6 mT
|
40.32 kg / 40320.8 g
395.5 N
|
niebezpieczny! |
| 15 mm |
2140 Gs
214.0 mT
|
24.31 kg / 24308.3 g
238.5 N
|
niebezpieczny! |
| 20 mm |
1644 Gs
164.4 mT
|
14.34 kg / 14338.1 g
140.7 N
|
niebezpieczny! |
| 30 mm |
975 Gs
97.5 mT
|
5.05 kg / 5046.0 g
49.5 N
|
średnie ryzyko |
| 50 mm |
388 Gs
38.8 mT
|
0.80 kg / 801.0 g
7.9 N
|
niskie ryzyko |
MW 55x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.45 kg / 18450.0 g
181.0 N
|
| 1 mm | Stal (~0.2) |
17.27 kg / 17274.0 g
169.5 N
|
| 2 mm | Stal (~0.2) |
16.09 kg / 16094.0 g
157.9 N
|
| 3 mm | Stal (~0.2) |
14.93 kg / 14934.0 g
146.5 N
|
| 5 mm | Stal (~0.2) |
12.72 kg / 12716.0 g
124.7 N
|
| 10 mm | Stal (~0.2) |
8.06 kg / 8064.0 g
79.1 N
|
| 15 mm | Stal (~0.2) |
4.86 kg / 4862.0 g
47.7 N
|
| 20 mm | Stal (~0.2) |
2.87 kg / 2868.0 g
28.1 N
|
| 30 mm | Stal (~0.2) |
1.01 kg / 1010.0 g
9.9 N
|
| 50 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
MW 55x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.68 kg / 27675.0 g
271.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.45 kg / 18450.0 g
181.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.23 kg / 9225.0 g
90.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
46.13 kg / 46125.0 g
452.5 N
|
MW 55x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
3.08 kg / 3075.0 g
30.2 N
|
| 1 mm |
|
7.69 kg / 7687.5 g
75.4 N
|
| 2 mm |
|
15.37 kg / 15375.0 g
150.8 N
|
| 5 mm |
|
38.44 kg / 38437.5 g
377.1 N
|
| 10 mm |
|
76.88 kg / 76875.0 g
754.1 N
|
MW 55x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
92.25 kg / 92250.0 g
905.0 N
|
OK |
| 40 °C | -2.2% |
90.22 kg / 90220.5 g
885.1 N
|
OK |
| 60 °C | -4.4% |
88.19 kg / 88191.0 g
865.2 N
|
|
| 80 °C | -6.6% |
86.16 kg / 86161.5 g
845.2 N
|
|
| 100 °C | -28.8% |
65.68 kg / 65682.0 g
644.3 N
|
MW 55x25 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
254.60 kg / 254602 g
2497.6 N
5 431 Gs
|
N/A |
| 1 mm |
246.57 kg / 246567 g
2418.8 N
8 206 Gs
|
221.91 kg / 221911 g
2176.9 N
~0 Gs
|
| 2 mm |
238.37 kg / 238373 g
2338.4 N
8 068 Gs
|
214.54 kg / 214536 g
2104.6 N
~0 Gs
|
| 3 mm |
230.21 kg / 230207 g
2258.3 N
7 929 Gs
|
207.19 kg / 207186 g
2032.5 N
~0 Gs
|
| 5 mm |
214.04 kg / 214042 g
2099.8 N
7 645 Gs
|
192.64 kg / 192638 g
1889.8 N
~0 Gs
|
| 10 mm |
175.48 kg / 175477 g
1721.4 N
6 923 Gs
|
157.93 kg / 157929 g
1549.3 N
~0 Gs
|
| 20 mm |
111.28 kg / 111282 g
1091.7 N
5 513 Gs
|
100.15 kg / 100154 g
982.5 N
~0 Gs
|
| 50 mm |
23.33 kg / 23326 g
228.8 N
2 524 Gs
|
20.99 kg / 20994 g
205.9 N
~0 Gs
|
MW 55x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 27.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 21.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 17.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 13.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 12.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
MW 55x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.05 km/h
(5.01 m/s)
|
5.60 J | |
| 30 mm |
25.98 km/h
(7.22 m/s)
|
11.60 J | |
| 50 mm |
32.63 km/h
(9.06 m/s)
|
18.30 J | |
| 100 mm |
45.90 km/h
(12.75 m/s)
|
36.21 J |
MW 55x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 55x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 101 075 Mx | 1010.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
MW 55x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 92.25 kg | Standard |
| Woda (dno rzeki) |
105.63 kg
(+13.38 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują estetyczny, błyszczący wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie ciała obcego (rdza, brud, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – za chuda płyta nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje nośność.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Zasady obsługi
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Uwaga: zadławienie
Magnesy neodymowe nie służą do zabawy. Inhalacja kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Nie zbliżaj do komputera
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Niklowa powłoka a alergia
Niektóre osoby wykazuje alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może skutkować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
