MW 55x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010081
GTIN/EAN: 5906301810803
Średnica Ø
55 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
445.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
92.25 kg / 904.94 N
Indukcja magnetyczna
416.97 mT / 4170 Gs
Powłoka
[NiCuNi] nikiel
154.21 ZŁ z VAT / szt. + cena za transport
125.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie daj znać za pomocą
nasz formularz online
w sekcji kontakt.
Właściwości oraz wygląd magnesu neodymowego zobaczysz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 55x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 55x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010081 |
| GTIN/EAN | 5906301810803 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 55 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 445.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 92.25 kg / 904.94 N |
| Indukcja magnetyczna ~ ? | 416.97 mT / 4170 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 55x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4169 Gs
416.9 mT
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
miażdżący |
| 1 mm |
4034 Gs
403.4 mT
|
86.37 kg / 190.41 lbs
86369.8 g / 847.3 N
|
miażdżący |
| 2 mm |
3894 Gs
389.4 mT
|
80.47 kg / 177.41 lbs
80469.7 g / 789.4 N
|
miażdżący |
| 3 mm |
3751 Gs
375.1 mT
|
74.67 kg / 164.62 lbs
74670.6 g / 732.5 N
|
miażdżący |
| 5 mm |
3461 Gs
346.1 mT
|
63.58 kg / 140.17 lbs
63580.6 g / 623.7 N
|
miażdżący |
| 10 mm |
2756 Gs
275.6 mT
|
40.32 kg / 88.89 lbs
40320.8 g / 395.5 N
|
miażdżący |
| 15 mm |
2140 Gs
214.0 mT
|
24.31 kg / 53.59 lbs
24308.3 g / 238.5 N
|
miażdżący |
| 20 mm |
1644 Gs
164.4 mT
|
14.34 kg / 31.61 lbs
14338.1 g / 140.7 N
|
miażdżący |
| 30 mm |
975 Gs
97.5 mT
|
5.05 kg / 11.12 lbs
5046.0 g / 49.5 N
|
średnie ryzyko |
| 50 mm |
388 Gs
38.8 mT
|
0.80 kg / 1.77 lbs
801.0 g / 7.9 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 55x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| 1 mm | Stal (~0.2) |
17.27 kg / 38.08 lbs
17274.0 g / 169.5 N
|
| 2 mm | Stal (~0.2) |
16.09 kg / 35.48 lbs
16094.0 g / 157.9 N
|
| 3 mm | Stal (~0.2) |
14.93 kg / 32.92 lbs
14934.0 g / 146.5 N
|
| 5 mm | Stal (~0.2) |
12.72 kg / 28.03 lbs
12716.0 g / 124.7 N
|
| 10 mm | Stal (~0.2) |
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| 15 mm | Stal (~0.2) |
4.86 kg / 10.72 lbs
4862.0 g / 47.7 N
|
| 20 mm | Stal (~0.2) |
2.87 kg / 6.32 lbs
2868.0 g / 28.1 N
|
| 30 mm | Stal (~0.2) |
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 50 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 55x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.68 kg / 61.01 lbs
27675.0 g / 271.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.23 kg / 20.34 lbs
9225.0 g / 90.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
46.13 kg / 101.69 lbs
46125.0 g / 452.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 55x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 1 mm |
|
7.69 kg / 16.95 lbs
7687.5 g / 75.4 N
|
| 2 mm |
|
15.37 kg / 33.90 lbs
15375.0 g / 150.8 N
|
| 3 mm |
|
23.06 kg / 50.84 lbs
23062.5 g / 226.2 N
|
| 5 mm |
|
38.44 kg / 84.74 lbs
38437.5 g / 377.1 N
|
| 10 mm |
|
76.88 kg / 169.48 lbs
76875.0 g / 754.1 N
|
| 11 mm |
|
84.56 kg / 186.43 lbs
84562.5 g / 829.6 N
|
| 12 mm |
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 55x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
OK |
| 40 °C | -2.2% |
90.22 kg / 198.90 lbs
90220.5 g / 885.1 N
|
OK |
| 60 °C | -4.4% |
88.19 kg / 194.43 lbs
88191.0 g / 865.2 N
|
|
| 80 °C | -6.6% |
86.16 kg / 189.95 lbs
86161.5 g / 845.2 N
|
|
| 100 °C | -28.8% |
65.68 kg / 144.80 lbs
65682.0 g / 644.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 55x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
254.60 kg / 561.30 lbs
5 431 Gs
|
38.19 kg / 84.20 lbs
38190 g / 374.6 N
|
N/A |
| 1 mm |
246.57 kg / 543.59 lbs
8 206 Gs
|
36.99 kg / 81.54 lbs
36985 g / 362.8 N
|
221.91 kg / 489.23 lbs
~0 Gs
|
| 2 mm |
238.37 kg / 525.52 lbs
8 068 Gs
|
35.76 kg / 78.83 lbs
35756 g / 350.8 N
|
214.54 kg / 472.97 lbs
~0 Gs
|
| 3 mm |
230.21 kg / 507.52 lbs
7 929 Gs
|
34.53 kg / 76.13 lbs
34531 g / 338.7 N
|
207.19 kg / 456.77 lbs
~0 Gs
|
| 5 mm |
214.04 kg / 471.88 lbs
7 645 Gs
|
32.11 kg / 70.78 lbs
32106 g / 315.0 N
|
192.64 kg / 424.69 lbs
~0 Gs
|
| 10 mm |
175.48 kg / 386.86 lbs
6 923 Gs
|
26.32 kg / 58.03 lbs
26322 g / 258.2 N
|
157.93 kg / 348.17 lbs
~0 Gs
|
| 20 mm |
111.28 kg / 245.33 lbs
5 513 Gs
|
16.69 kg / 36.80 lbs
16692 g / 163.8 N
|
100.15 kg / 220.80 lbs
~0 Gs
|
| 50 mm |
23.33 kg / 51.43 lbs
2 524 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
20.99 kg / 46.28 lbs
~0 Gs
|
| 60 mm |
13.93 kg / 30.70 lbs
1 950 Gs
|
2.09 kg / 4.61 lbs
2089 g / 20.5 N
|
12.53 kg / 27.63 lbs
~0 Gs
|
| 70 mm |
8.48 kg / 18.70 lbs
1 522 Gs
|
1.27 kg / 2.81 lbs
1272 g / 12.5 N
|
7.63 kg / 16.83 lbs
~0 Gs
|
| 80 mm |
5.29 kg / 11.66 lbs
1 202 Gs
|
0.79 kg / 1.75 lbs
793 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 90 mm |
3.38 kg / 7.45 lbs
961 Gs
|
0.51 kg / 1.12 lbs
507 g / 5.0 N
|
3.04 kg / 6.70 lbs
~0 Gs
|
| 100 mm |
2.21 kg / 4.87 lbs
777 Gs
|
0.33 kg / 0.73 lbs
332 g / 3.3 N
|
1.99 kg / 4.39 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 55x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 27.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 21.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 17.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 13.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 12.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 55x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.05 km/h
(5.01 m/s)
|
5.60 J | |
| 30 mm |
25.98 km/h
(7.22 m/s)
|
11.60 J | |
| 50 mm |
32.63 km/h
(9.06 m/s)
|
18.30 J | |
| 100 mm |
45.90 km/h
(12.75 m/s)
|
36.21 J |
Tabela 9: Parametry powłoki (trwałość)
MW 55x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 55x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 101 075 Mx | 1010.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 55x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 92.25 kg | Standard |
| Woda (dno rzeki) |
105.63 kg
(+13.38 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi zaledwie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Dla uczulonych
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Kruchy spiek
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Zagrożenie dla najmłodszych
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Zagrożenie życia
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Moc przyciągania
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Temperatura pracy
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Pył jest łatwopalny
Pył generowany podczas szlifowania magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
