Magnesy neodymowe – najmocniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Oferujemy szeroki wybór magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do zastosowań domowych, garażu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

sprawdź katalog magnesów

Magnesy do eksploracji dna

Odkryj pasję z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w rzekach i jeziorach.

wybierz zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Niezawodne rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy mocowaniu lamp, czujników oraz banerów.

sprawdź zastosowania przemysłowe

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 4x6 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010078

GTIN/EAN: 5906301810773

5.00

Średnica Ø

4 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

0.57 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.41 kg / 4.06 N

Indukcja magnetyczna

586.32 mT / 5863 Gs

Powłoka

[NiCuNi] nikiel

0.381 z VAT / szt. + cena za transport

0.310 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.310 ZŁ
0.381 ZŁ
cena od 1000 szt.
0.279 ZŁ
0.343 ZŁ
cena od 3360 szt.
0.273 ZŁ
0.336 ZŁ
Nie wiesz gdzie kupić?

Zadzwoń już teraz +48 888 99 98 98 albo skontaktuj się korzystając z formularz zgłoszeniowy przez naszą stronę.
Masę oraz wygląd magnesów neodymowych przetestujesz u nas w naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Parametry techniczne - MW 4x6 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 4x6 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010078
GTIN/EAN 5906301810773
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 4 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 0.57 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.41 kg / 4.06 N
Indukcja magnetyczna ~ ? 586.32 mT / 5863 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 4x6 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu neodymowego - parametry techniczne

Poniższe informacje są wynik analizy fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 4x6 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5852 Gs
585.2 mT
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
bezpieczny
1 mm 3189 Gs
318.9 mT
0.12 kg / 0.27 lbs
121.7 g / 1.2 N
bezpieczny
2 mm 1631 Gs
163.1 mT
0.03 kg / 0.07 lbs
31.8 g / 0.3 N
bezpieczny
3 mm 894 Gs
89.4 mT
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
bezpieczny
5 mm 343 Gs
34.3 mT
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
bezpieczny
10 mm 73 Gs
7.3 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
bezpieczny
15 mm 26 Gs
2.6 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
20 mm 13 Gs
1.3 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
30 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa obsunięcia (pion)
MW 4x6 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.08 kg / 0.18 lbs
82.0 g / 0.8 N
1 mm Stal (~0.2) 0.02 kg / 0.05 lbs
24.0 g / 0.2 N
2 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
3 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 4x6 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.12 kg / 0.27 lbs
123.0 g / 1.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.21 kg / 0.45 lbs
205.0 g / 2.0 N

Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 4x6 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
1 mm
25%
0.10 kg / 0.23 lbs
102.5 g / 1.0 N
2 mm
50%
0.21 kg / 0.45 lbs
205.0 g / 2.0 N
3 mm
75%
0.31 kg / 0.68 lbs
307.5 g / 3.0 N
5 mm
100%
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
10 mm
100%
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
11 mm
100%
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
12 mm
100%
0.41 kg / 0.90 lbs
410.0 g / 4.0 N

Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 4x6 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.41 kg / 0.90 lbs
410.0 g / 4.0 N
OK
40 °C -2.2% 0.40 kg / 0.88 lbs
401.0 g / 3.9 N
OK
60 °C -4.4% 0.39 kg / 0.86 lbs
392.0 g / 3.8 N
OK
80 °C -6.6% 0.38 kg / 0.84 lbs
382.9 g / 3.8 N
100 °C -28.8% 0.29 kg / 0.64 lbs
291.9 g / 2.9 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 4x6 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.65 kg / 5.85 lbs
6 085 Gs
0.40 kg / 0.88 lbs
398 g / 3.9 N
N/A
1 mm 1.51 kg / 3.34 lbs
8 844 Gs
0.23 kg / 0.50 lbs
227 g / 2.2 N
1.36 kg / 3.01 lbs
~0 Gs
2 mm 0.79 kg / 1.74 lbs
6 377 Gs
0.12 kg / 0.26 lbs
118 g / 1.2 N
0.71 kg / 1.56 lbs
~0 Gs
3 mm 0.40 kg / 0.88 lbs
4 541 Gs
0.06 kg / 0.13 lbs
60 g / 0.6 N
0.36 kg / 0.79 lbs
~0 Gs
5 mm 0.11 kg / 0.24 lbs
2 388 Gs
0.02 kg / 0.04 lbs
17 g / 0.2 N
0.10 kg / 0.22 lbs
~0 Gs
10 mm 0.01 kg / 0.02 lbs
687 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
145 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
14 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 4x6 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Pilot do auta 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 4x6 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 27.05 km/h
(7.51 m/s)
0.02 J
30 mm 46.85 km/h
(13.01 m/s)
0.05 J
50 mm 60.48 km/h
(16.80 m/s)
0.08 J
100 mm 85.53 km/h
(23.76 m/s)
0.16 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 4x6 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Flux)
MW 4x6 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 792 Mx 7.9 µWb
Współczynnik Pc 1.09 Wysoki (Stabilny)

Tabela 11: Zastosowanie podwodne
MW 4x6 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.41 kg Standard
Woda (dno rzeki) 0.47 kg
(+0.06 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Siła zsuwająca

*Ważne: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły oderwania.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.

3. Wytrzymałość temperaturowa

*W klasie N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.09

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010078-2025
Kalkulator miar
Siła oderwania

Moc pola

Inne propozycje

Prezentowany produkt to ekstremalnie mocny magnes walcowy, który został wykonany z nowoczesnego materiału NdFeB, co przy wymiarach Ø4x6 mm gwarantuje optymalną moc. Komponent MW 4x6 / N38 cechuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 0.41 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia szybką realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się skupienie pola na małej powierzchni. Dzięki dużej mocy 4.06 N przy wadze zaledwie 0.57 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 4,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najpopularniejszy standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz stabilność pracy. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø4x6), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø4x6 mm, co przy wadze 0.57 g czyni go elementem o wysokiej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 0.41 kg (siła ~4.06 N), co przy tak określonych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 4 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Zalety i wady magnesów neodymowych Nd2Fe14B.

Zalety

Poza potężną siłą, te produkty gwarantują dodatkowe korzyści::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
  • Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
  • Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.

Słabe strony

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Siła oderwania magnesu w optymalnych warunkachco się na to składa?

Informacja o udźwigu została wyznaczona dla warunków idealnego styku, obejmującej:
  • przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
  • której grubość to min. 10 mm
  • charakteryzującej się gładkością
  • w warunkach idealnego przylegania (powierzchnia do powierzchni)
  • dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
  • w neutralnych warunkach termicznych

Czynniki determinujące udźwig w warunkach realnych

Na skuteczność trzymania mają wpływ parametry środowiska pracy, m.in. (od najważniejszych):
  • Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
  • Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
  • Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
  • Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
  • Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.

Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.

Ostrzeżenia
Przegrzanie magnesu

Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.

Pył jest łatwopalny

Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.

Dla uczulonych

Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.

Kruchy spiek

Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.

Implanty kardiologiczne

Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może zakłócić pracę urządzenia ratującego życie.

Wpływ na smartfony

Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.

Tylko dla dorosłych

Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.

Niszczenie danych

Unikaj zbliżania magnesów do portfela, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Siła neodymu

Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.

Urazy ciała

Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.

Zagrożenie! Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98