MW 4x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010078
GTIN/EAN: 5906301810773
Średnica Ø
4 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
0.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.41 kg / 4.06 N
Indukcja magnetyczna
586.32 mT / 5863 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Właściwości i budowę magnesu neodymowego skontrolujesz w naszym
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 4x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 4x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010078 |
| GTIN/EAN | 5906301810773 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 4 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 0.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.41 kg / 4.06 N |
| Indukcja magnetyczna ~ ? | 586.32 mT / 5863 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione wartości są bezpośredni efekt kalkulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 4x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5852 Gs
585.2 mT
|
0.41 kg / 410.0 g
4.0 N
|
niskie ryzyko |
| 1 mm |
3189 Gs
318.9 mT
|
0.12 kg / 121.7 g
1.2 N
|
niskie ryzyko |
| 2 mm |
1631 Gs
163.1 mT
|
0.03 kg / 31.8 g
0.3 N
|
niskie ryzyko |
| 3 mm |
894 Gs
89.4 mT
|
0.01 kg / 9.6 g
0.1 N
|
niskie ryzyko |
| 5 mm |
343 Gs
34.3 mT
|
0.00 kg / 1.4 g
0.0 N
|
niskie ryzyko |
| 10 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 4x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 4x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 123.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 82.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 41.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.21 kg / 205.0 g
2.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 4x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 41.0 g
0.4 N
|
| 1 mm |
|
0.10 kg / 102.5 g
1.0 N
|
| 2 mm |
|
0.21 kg / 205.0 g
2.0 N
|
| 5 mm |
|
0.41 kg / 410.0 g
4.0 N
|
| 10 mm |
|
0.41 kg / 410.0 g
4.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 4x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.41 kg / 410.0 g
4.0 N
|
OK |
| 40 °C | -2.2% |
0.40 kg / 401.0 g
3.9 N
|
OK |
| 60 °C | -4.4% |
0.39 kg / 392.0 g
3.8 N
|
OK |
| 80 °C | -6.6% |
0.38 kg / 382.9 g
3.8 N
|
|
| 100 °C | -28.8% |
0.29 kg / 291.9 g
2.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 4x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.65 kg / 2653 g
26.0 N
6 085 Gs
|
N/A |
| 1 mm |
1.51 kg / 1515 g
14.9 N
8 844 Gs
|
1.36 kg / 1363 g
13.4 N
~0 Gs
|
| 2 mm |
0.79 kg / 788 g
7.7 N
6 377 Gs
|
0.71 kg / 709 g
7.0 N
~0 Gs
|
| 3 mm |
0.40 kg / 399 g
3.9 N
4 541 Gs
|
0.36 kg / 359 g
3.5 N
~0 Gs
|
| 5 mm |
0.11 kg / 110 g
1.1 N
2 388 Gs
|
0.10 kg / 99 g
1.0 N
~0 Gs
|
| 10 mm |
0.01 kg / 9 g
0.1 N
687 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
145 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
14 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 4x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 4x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.05 km/h
(7.51 m/s)
|
0.02 J | |
| 30 mm |
46.85 km/h
(13.01 m/s)
|
0.05 J | |
| 50 mm |
60.48 km/h
(16.80 m/s)
|
0.08 J | |
| 100 mm |
85.53 km/h
(23.76 m/s)
|
0.16 J |
Tabela 9: Odporność na korozję
MW 4x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 4x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 792 Mx | 7.9 µWb |
| Współczynnik Pc | 1.09 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 4x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.41 kg | Standard |
| Woda (dno rzeki) |
0.47 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.09
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której grubość wynosi ok. 10 mm
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Dystans (między magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje udźwig.
Bezpieczna praca z magnesami neodymowymi
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Ostrzeżenie dla sercowców
Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.
Ryzyko pożaru
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Reakcje alergiczne
Pewna grupa użytkowników posiada alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Sugerujemy noszenie rękawic bezlateksowych.
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Niszczenie danych
Ekstremalne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą połamać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
