MW 4x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010078
GTIN: 5906301810773
Średnica Ø
4 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
0.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.41 kg / 4.06 N
Indukcja magnetyczna
586.32 mT / 5863 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz wątpliwości?
Zadzwoń już teraz
+48 888 99 98 98
lub daj znać poprzez
nasz formularz online
na naszej stronie.
Moc i wygląd magnesów testujesz w naszym
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
MW 4x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 4x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010078 |
| GTIN | 5906301810773 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 4 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 0.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.41 kg / 4.06 N |
| Indukcja magnetyczna ~ ? | 586.32 mT / 5863 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Niniejsze dane są bezpośredni efekt kalkulacji matematycznej. Wartości oparte są na algorytmach dla materiału NdFeB. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz dla projektantów.
MW 4x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5852 Gs
585.2 mT
|
0.41 kg / 410.0 g
4.0 N
|
słaby uchwyt |
| 1 mm |
3189 Gs
318.9 mT
|
0.12 kg / 121.7 g
1.2 N
|
słaby uchwyt |
| 2 mm |
1631 Gs
163.1 mT
|
0.03 kg / 31.8 g
0.3 N
|
słaby uchwyt |
| 3 mm |
894 Gs
89.4 mT
|
0.01 kg / 9.6 g
0.1 N
|
słaby uchwyt |
| 5 mm |
343 Gs
34.3 mT
|
0.00 kg / 1.4 g
0.0 N
|
słaby uchwyt |
| 10 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 4x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 4x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 123.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 82.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 41.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.21 kg / 205.0 g
2.0 N
|
MW 4x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 41.0 g
0.4 N
|
| 1 mm |
|
0.10 kg / 102.5 g
1.0 N
|
| 2 mm |
|
0.21 kg / 205.0 g
2.0 N
|
| 5 mm |
|
0.41 kg / 410.0 g
4.0 N
|
| 10 mm |
|
0.41 kg / 410.0 g
4.0 N
|
MW 4x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.41 kg / 410.0 g
4.0 N
|
OK |
| 40 °C | -2.2% |
0.40 kg / 401.0 g
3.9 N
|
OK |
| 60 °C | -4.4% |
0.39 kg / 392.0 g
3.8 N
|
OK |
| 80 °C | -6.6% |
0.38 kg / 382.9 g
3.8 N
|
|
| 100 °C | -28.8% |
0.29 kg / 291.9 g
2.9 N
|
MW 4x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.41 kg / 414 g
4.1 N
11 764 Gs
|
N/A |
| 1 mm |
0.12 kg / 122 g
1.2 N
8 844 Gs
|
0.11 kg / 110 g
1.1 N
~0 Gs
|
| 2 mm |
0.03 kg / 32 g
0.3 N
6 377 Gs
|
0.03 kg / 29 g
0.3 N
~0 Gs
|
| 3 mm |
0.01 kg / 10 g
0.1 N
4 541 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 5 mm |
0.00 kg / 1 g
0.0 N
2 388 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
687 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
145 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
14 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 4x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 4x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.05 km/h
(7.51 m/s)
|
0.02 J | |
| 30 mm |
46.85 km/h
(13.01 m/s)
|
0.05 J | |
| 50 mm |
60.48 km/h
(16.80 m/s)
|
0.08 J | |
| 100 mm |
85.53 km/h
(23.76 m/s)
|
0.16 J |
MW 4x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 4x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 792 Mx | 7.9 µWb |
| Współczynnik Pc | 1.09 | Wysoki (Stabilny) |
MW 4x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.41 kg | Standard |
| Woda (dno rzeki) |
0.47 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
Zobacz też inne oferty
Wady i zalety magnesów z neodymu NdFeB.
Warto zwrócić uwagę, że obok ekstremalnej mocy, produkty te wyróżniają się następującymi zaletami:
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Mimo zalet, posiadają też wady:
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Maksymalny udźwig magnesu – co się na to składa?
Parametr siły jest wynikiem testu laboratoryjnego wykonanego w następującej konfiguracji:
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- o grubości przynajmniej 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
Należy pamiętać, że siła w aplikacji może być niższe w zależności od następujących czynników, zaczynając od najistotniejszych:
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem dzieci i zwierząt.
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Nie zbliżaj do komputera
Potężne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Urazy ciała
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Reakcje alergiczne
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zakaz obróbki
Proszek generowany podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Bezpieczna praca
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Bezpieczeństwo!
Chcesz wiedzieć więcej? Sprawdź nasz artykuł: Czy magnesy są groźne?
