MW 45x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010074
GTIN/EAN: 5906301810735
Średnica Ø
45 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
417.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
68.98 kg / 676.73 N
Indukcja magnetyczna
521.39 mT / 5214 Gs
Powłoka
[NiCuNi] nikiel
180.10 ZŁ z VAT / szt. + cena za transport
146.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie zostaw wiadomość przez
formularz zapytania
na naszej stronie.
Parametry oraz formę magnesu neodymowego obliczysz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane produktu - MW 45x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010074 |
| GTIN/EAN | 5906301810735 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 417.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 68.98 kg / 676.73 N |
| Indukcja magnetyczna ~ ? | 521.39 mT / 5214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione informacje są wynik kalkulacji matematycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 45x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5213 Gs
521.3 mT
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
miażdżący |
| 1 mm |
4982 Gs
498.2 mT
|
63.01 kg / 138.91 lbs
63010.2 g / 618.1 N
|
miażdżący |
| 2 mm |
4748 Gs
474.8 mT
|
57.23 kg / 126.18 lbs
57234.3 g / 561.5 N
|
miażdżący |
| 3 mm |
4516 Gs
451.6 mT
|
51.76 kg / 114.10 lbs
51756.9 g / 507.7 N
|
miażdżący |
| 5 mm |
4059 Gs
405.9 mT
|
41.82 kg / 92.19 lbs
41816.3 g / 410.2 N
|
miażdżący |
| 10 mm |
3027 Gs
302.7 mT
|
23.26 kg / 51.29 lbs
23264.1 g / 228.2 N
|
miażdżący |
| 15 mm |
2215 Gs
221.5 mT
|
12.45 kg / 27.45 lbs
12451.1 g / 122.1 N
|
miażdżący |
| 20 mm |
1619 Gs
161.9 mT
|
6.66 kg / 14.67 lbs
6656.2 g / 65.3 N
|
uwaga |
| 30 mm |
899 Gs
89.9 mT
|
2.05 kg / 4.52 lbs
2051.1 g / 20.1 N
|
uwaga |
| 50 mm |
340 Gs
34.0 mT
|
0.29 kg / 0.65 lbs
292.8 g / 2.9 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 45x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| 1 mm | Stal (~0.2) |
12.60 kg / 27.78 lbs
12602.0 g / 123.6 N
|
| 2 mm | Stal (~0.2) |
11.45 kg / 25.23 lbs
11446.0 g / 112.3 N
|
| 3 mm | Stal (~0.2) |
10.35 kg / 22.82 lbs
10352.0 g / 101.6 N
|
| 5 mm | Stal (~0.2) |
8.36 kg / 18.44 lbs
8364.0 g / 82.1 N
|
| 10 mm | Stal (~0.2) |
4.65 kg / 10.26 lbs
4652.0 g / 45.6 N
|
| 15 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 2.94 lbs
1332.0 g / 13.1 N
|
| 30 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 45x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.69 kg / 45.62 lbs
20694.0 g / 203.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.90 kg / 15.21 lbs
6898.0 g / 67.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.49 kg / 76.04 lbs
34490.0 g / 338.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 45x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.30 kg / 5.07 lbs
2299.3 g / 22.6 N
|
| 1 mm |
|
5.75 kg / 12.67 lbs
5748.3 g / 56.4 N
|
| 2 mm |
|
11.50 kg / 25.35 lbs
11496.7 g / 112.8 N
|
| 3 mm |
|
17.25 kg / 38.02 lbs
17245.0 g / 169.2 N
|
| 5 mm |
|
28.74 kg / 63.36 lbs
28741.7 g / 282.0 N
|
| 10 mm |
|
57.48 kg / 126.73 lbs
57483.3 g / 563.9 N
|
| 11 mm |
|
63.23 kg / 139.40 lbs
63231.7 g / 620.3 N
|
| 12 mm |
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 45x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
OK |
| 40 °C | -2.2% |
67.46 kg / 148.73 lbs
67462.4 g / 661.8 N
|
OK |
| 60 °C | -4.4% |
65.94 kg / 145.38 lbs
65944.9 g / 646.9 N
|
OK |
| 80 °C | -6.6% |
64.43 kg / 142.04 lbs
64427.3 g / 632.0 N
|
|
| 100 °C | -28.8% |
49.11 kg / 108.28 lbs
49113.8 g / 481.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 45x35 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
266.45 kg / 587.43 lbs
5 900 Gs
|
39.97 kg / 88.11 lbs
39968 g / 392.1 N
|
N/A |
| 1 mm |
254.93 kg / 562.03 lbs
10 198 Gs
|
38.24 kg / 84.30 lbs
38240 g / 375.1 N
|
229.44 kg / 505.82 lbs
~0 Gs
|
| 2 mm |
243.39 kg / 536.59 lbs
9 965 Gs
|
36.51 kg / 80.49 lbs
36509 g / 358.2 N
|
219.05 kg / 482.93 lbs
~0 Gs
|
| 3 mm |
232.10 kg / 511.70 lbs
9 731 Gs
|
34.82 kg / 76.76 lbs
34816 g / 341.5 N
|
208.89 kg / 460.53 lbs
~0 Gs
|
| 5 mm |
210.35 kg / 463.75 lbs
9 264 Gs
|
31.55 kg / 69.56 lbs
31553 g / 309.5 N
|
189.32 kg / 417.37 lbs
~0 Gs
|
| 10 mm |
161.53 kg / 356.11 lbs
8 118 Gs
|
24.23 kg / 53.42 lbs
24229 g / 237.7 N
|
145.37 kg / 320.49 lbs
~0 Gs
|
| 20 mm |
89.86 kg / 198.12 lbs
6 055 Gs
|
13.48 kg / 29.72 lbs
13480 g / 132.2 N
|
80.88 kg / 178.30 lbs
~0 Gs
|
| 50 mm |
14.04 kg / 30.96 lbs
2 394 Gs
|
2.11 kg / 4.64 lbs
2107 g / 20.7 N
|
12.64 kg / 27.87 lbs
~0 Gs
|
| 60 mm |
7.92 kg / 17.47 lbs
1 798 Gs
|
1.19 kg / 2.62 lbs
1188 g / 11.7 N
|
7.13 kg / 15.72 lbs
~0 Gs
|
| 70 mm |
4.63 kg / 10.21 lbs
1 375 Gs
|
0.69 kg / 1.53 lbs
695 g / 6.8 N
|
4.17 kg / 9.19 lbs
~0 Gs
|
| 80 mm |
2.80 kg / 6.18 lbs
1 070 Gs
|
0.42 kg / 0.93 lbs
421 g / 4.1 N
|
2.52 kg / 5.56 lbs
~0 Gs
|
| 90 mm |
1.75 kg / 3.87 lbs
846 Gs
|
0.26 kg / 0.58 lbs
263 g / 2.6 N
|
1.58 kg / 3.48 lbs
~0 Gs
|
| 100 mm |
1.13 kg / 2.49 lbs
679 Gs
|
0.17 kg / 0.37 lbs
170 g / 1.7 N
|
1.02 kg / 2.24 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 45x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 45x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.46 km/h
(4.29 m/s)
|
3.85 J | |
| 30 mm |
22.87 km/h
(6.35 m/s)
|
8.42 J | |
| 50 mm |
29.06 km/h
(8.07 m/s)
|
13.61 J | |
| 100 mm |
41.00 km/h
(11.39 m/s)
|
27.07 J |
Tabela 9: Odporność na korozję
MW 45x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 45x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 83 921 Mx | 839.2 µWb |
| Współczynnik Pc | 0.78 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 45x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 68.98 kg | Standard |
| Woda (dno rzeki) |
78.98 kg
(+10.00 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.78
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Ostrożność wymagana
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Niszczenie danych
Potężne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Ryzyko uczulenia
Pewna grupa użytkowników posiada uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może powodować silną reakcję alergiczną. Wskazane jest noszenie rękawiczek ochronnych.
Ryzyko połknięcia
Silne magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Zakaz obróbki
Pył powstający podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
