MW 16x9 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010035
GTIN/EAN: 5906301810346
Średnica Ø
16 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.53 kg / 83.64 N
Indukcja magnetyczna
463.05 mT / 4631 Gs
Powłoka
[NiCuNi] nikiel
7.36 ZŁ z VAT / szt. + cena za transport
5.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie zostaw wiadomość przez
formularz kontaktowy
na naszej stronie.
Moc i kształt elementów magnetycznych zweryfikujesz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MW 16x9 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x9 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010035 |
| GTIN/EAN | 5906301810346 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.53 kg / 83.64 N |
| Indukcja magnetyczna ~ ? | 463.05 mT / 4631 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt analizy fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 16x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4628 Gs
462.8 mT
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
mocny |
| 1 mm |
4072 Gs
407.2 mT
|
6.60 kg / 14.56 lbs
6603.5 g / 64.8 N
|
mocny |
| 2 mm |
3510 Gs
351.0 mT
|
4.91 kg / 10.82 lbs
4906.8 g / 48.1 N
|
mocny |
| 3 mm |
2982 Gs
298.2 mT
|
3.54 kg / 7.80 lbs
3540.1 g / 34.7 N
|
mocny |
| 5 mm |
2097 Gs
209.7 mT
|
1.75 kg / 3.86 lbs
1751.1 g / 17.2 N
|
słaby uchwyt |
| 10 mm |
873 Gs
87.3 mT
|
0.30 kg / 0.67 lbs
303.3 g / 3.0 N
|
słaby uchwyt |
| 15 mm |
411 Gs
41.1 mT
|
0.07 kg / 0.15 lbs
67.3 g / 0.7 N
|
słaby uchwyt |
| 20 mm |
220 Gs
22.0 mT
|
0.02 kg / 0.04 lbs
19.3 g / 0.2 N
|
słaby uchwyt |
| 30 mm |
83 Gs
8.3 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 16x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.71 kg / 3.76 lbs
1706.0 g / 16.7 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 2.91 lbs
1320.0 g / 12.9 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
982.0 g / 9.6 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.56 lbs
708.0 g / 6.9 N
|
| 5 mm | Stal (~0.2) |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 16x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.56 kg / 5.64 lbs
2559.0 g / 25.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.71 kg / 3.76 lbs
1706.0 g / 16.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.85 kg / 1.88 lbs
853.0 g / 8.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.27 kg / 9.40 lbs
4265.0 g / 41.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 16x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.85 kg / 1.88 lbs
853.0 g / 8.4 N
|
| 1 mm |
|
2.13 kg / 4.70 lbs
2132.5 g / 20.9 N
|
| 2 mm |
|
4.27 kg / 9.40 lbs
4265.0 g / 41.8 N
|
| 3 mm |
|
6.40 kg / 14.10 lbs
6397.5 g / 62.8 N
|
| 5 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 10 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 11 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 12 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 16x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
OK |
| 40 °C | -2.2% |
8.34 kg / 18.39 lbs
8342.3 g / 81.8 N
|
OK |
| 60 °C | -4.4% |
8.15 kg / 17.98 lbs
8154.7 g / 80.0 N
|
OK |
| 80 °C | -6.6% |
7.97 kg / 17.56 lbs
7967.0 g / 78.2 N
|
|
| 100 °C | -28.8% |
6.07 kg / 13.39 lbs
6073.4 g / 59.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 16x9 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.55 kg / 58.54 lbs
5 658 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
N/A |
| 1 mm |
23.52 kg / 51.85 lbs
8 711 Gs
|
3.53 kg / 7.78 lbs
3528 g / 34.6 N
|
21.17 kg / 46.66 lbs
~0 Gs
|
| 2 mm |
20.56 kg / 45.32 lbs
8 145 Gs
|
3.08 kg / 6.80 lbs
3084 g / 30.2 N
|
18.50 kg / 40.79 lbs
~0 Gs
|
| 3 mm |
17.80 kg / 39.23 lbs
7 578 Gs
|
2.67 kg / 5.89 lbs
2669 g / 26.2 N
|
16.02 kg / 35.31 lbs
~0 Gs
|
| 5 mm |
13.01 kg / 28.69 lbs
6 481 Gs
|
1.95 kg / 4.30 lbs
1952 g / 19.2 N
|
11.71 kg / 25.82 lbs
~0 Gs
|
| 10 mm |
5.45 kg / 12.02 lbs
4 194 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 20 mm |
0.94 kg / 2.08 lbs
1 746 Gs
|
0.14 kg / 0.31 lbs
142 g / 1.4 N
|
0.85 kg / 1.87 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.05 lbs
260 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
166 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
79 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 16x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 16x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.84 km/h
(7.18 m/s)
|
0.35 J | |
| 30 mm |
43.80 km/h
(12.17 m/s)
|
1.00 J | |
| 50 mm |
56.54 km/h
(15.71 m/s)
|
1.67 J | |
| 100 mm |
79.96 km/h
(22.21 m/s)
|
3.35 J |
Tabela 9: Parametry powłoki (trwałość)
MW 16x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 16x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 394 Mx | 93.9 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 16x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.53 kg | Standard |
| Woda (dno rzeki) |
9.77 kg
(+1.24 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, srebro) mają nowoczesny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż zdążysz zareagować.
Nie wierć w magnesach
Proszek generowany podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Niszczenie danych
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od dzieci i zwierząt.
Kompas i GPS
Silne pole magnetyczne destabilizuje funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Alergia na nikiel
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
