MW 15x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010027
GTIN/EAN: 5906301810261
Średnica Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.70 kg / 75.55 N
Indukcja magnetyczna
495.60 mT / 4956 Gs
Powłoka
[NiCuNi] nikiel
4.51 ZŁ z VAT / szt. + cena za transport
3.67 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub pisz korzystając z
nasz formularz online
przez naszą stronę.
Moc a także formę elementów magnetycznych sprawdzisz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 15x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010027 |
| GTIN/EAN | 5906301810261 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.70 kg / 75.55 N |
| Indukcja magnetyczna ~ ? | 495.60 mT / 4956 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione dane są wynik analizy inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4954 Gs
495.4 mT
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
mocny |
| 1 mm |
4303 Gs
430.3 mT
|
5.81 kg / 12.81 lbs
5810.9 g / 57.0 N
|
mocny |
| 2 mm |
3660 Gs
366.0 mT
|
4.20 kg / 9.27 lbs
4203.8 g / 41.2 N
|
mocny |
| 3 mm |
3068 Gs
306.8 mT
|
2.95 kg / 6.51 lbs
2953.2 g / 29.0 N
|
mocny |
| 5 mm |
2106 Gs
210.6 mT
|
1.39 kg / 3.07 lbs
1392.2 g / 13.7 N
|
niskie ryzyko |
| 10 mm |
845 Gs
84.5 mT
|
0.22 kg / 0.49 lbs
224.2 g / 2.2 N
|
niskie ryzyko |
| 15 mm |
393 Gs
39.3 mT
|
0.05 kg / 0.11 lbs
48.5 g / 0.5 N
|
niskie ryzyko |
| 20 mm |
210 Gs
21.0 mT
|
0.01 kg / 0.03 lbs
13.8 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
79 Gs
7.9 mT
|
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 2.56 lbs
1162.0 g / 11.4 N
|
| 2 mm | Stal (~0.2) |
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 1.30 lbs
590.0 g / 5.8 N
|
| 5 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.31 kg / 5.09 lbs
2310.0 g / 22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.24 lbs
1925.0 g / 18.9 N
|
| 2 mm |
|
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
| 3 mm |
|
5.78 kg / 12.73 lbs
5775.0 g / 56.7 N
|
| 5 mm |
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
| 10 mm |
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
| 11 mm |
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
| 12 mm |
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
OK |
| 40 °C | -2.2% |
7.53 kg / 16.60 lbs
7530.6 g / 73.9 N
|
OK |
| 60 °C | -4.4% |
7.36 kg / 16.23 lbs
7361.2 g / 72.2 N
|
OK |
| 80 °C | -6.6% |
7.19 kg / 15.86 lbs
7191.8 g / 70.6 N
|
|
| 100 °C | -28.8% |
5.48 kg / 12.09 lbs
5482.4 g / 53.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 15x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.73 kg / 58.93 lbs
5 797 Gs
|
4.01 kg / 8.84 lbs
4010 g / 39.3 N
|
N/A |
| 1 mm |
23.38 kg / 51.55 lbs
9 265 Gs
|
3.51 kg / 7.73 lbs
3507 g / 34.4 N
|
21.04 kg / 46.39 lbs
~0 Gs
|
| 2 mm |
20.17 kg / 44.48 lbs
8 606 Gs
|
3.03 kg / 6.67 lbs
3026 g / 29.7 N
|
18.16 kg / 40.03 lbs
~0 Gs
|
| 3 mm |
17.23 kg / 37.99 lbs
7 955 Gs
|
2.59 kg / 5.70 lbs
2585 g / 25.4 N
|
15.51 kg / 34.19 lbs
~0 Gs
|
| 5 mm |
12.27 kg / 27.05 lbs
6 712 Gs
|
1.84 kg / 4.06 lbs
1840 g / 18.1 N
|
11.04 kg / 24.34 lbs
~0 Gs
|
| 10 mm |
4.83 kg / 10.66 lbs
4 213 Gs
|
0.73 kg / 1.60 lbs
725 g / 7.1 N
|
4.35 kg / 9.59 lbs
~0 Gs
|
| 20 mm |
0.78 kg / 1.72 lbs
1 690 Gs
|
0.12 kg / 0.26 lbs
117 g / 1.1 N
|
0.70 kg / 1.54 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
248 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
158 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
75 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.75 km/h
(6.88 m/s)
|
0.31 J | |
| 30 mm |
42.12 km/h
(11.70 m/s)
|
0.91 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.51 J | |
| 100 mm |
76.88 km/h
(21.36 m/s)
|
3.02 J |
Tabela 9: Parametry powłoki (trwałość)
MW 15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 827 Mx | 88.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.70 kg | Standard |
| Woda (dno rzeki) |
8.82 kg
(+1.12 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z zastosowaniem płyty ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się gładkością
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda płyta powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Zagrożenie dla nawigacji
Silne pole magnetyczne destabilizuje działanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Karty i dyski
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Nadwrażliwość na metale
Pewna grupa użytkowników wykazuje alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może powodować zaczerwienienie skóry. Zalecamy używanie rękawic bezlateksowych.
Moc przyciągania
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Nie dawać dzieciom
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Implanty medyczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
