MW 12x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010022
GTIN/EAN: 5906301810216
Średnica Ø
12 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
6.79 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.93 kg / 48.32 N
Indukcja magnetyczna
495.50 mT / 4955 Gs
Powłoka
[NiCuNi] nikiel
2.47 ZŁ z VAT / szt. + cena za transport
2.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo zostaw wiadomość przez
formularz
na stronie kontakt.
Moc i wygląd magnesów obliczysz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 12x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010022 |
| GTIN/EAN | 5906301810216 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 6.79 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.93 kg / 48.32 N |
| Indukcja magnetyczna ~ ? | 495.50 mT / 4955 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze dane stanowią rezultat kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 12x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4952 Gs
495.2 mT
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
uwaga |
| 1 mm |
4139 Gs
413.9 mT
|
3.44 kg / 7.59 lbs
3445.0 g / 33.8 N
|
uwaga |
| 2 mm |
3356 Gs
335.6 mT
|
2.26 kg / 4.99 lbs
2264.2 g / 22.2 N
|
uwaga |
| 3 mm |
2670 Gs
267.0 mT
|
1.43 kg / 3.16 lbs
1433.5 g / 14.1 N
|
słaby uchwyt |
| 5 mm |
1660 Gs
166.0 mT
|
0.55 kg / 1.22 lbs
554.1 g / 5.4 N
|
słaby uchwyt |
| 10 mm |
565 Gs
56.5 mT
|
0.06 kg / 0.14 lbs
64.3 g / 0.6 N
|
słaby uchwyt |
| 15 mm |
243 Gs
24.3 mT
|
0.01 kg / 0.03 lbs
11.8 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
124 Gs
12.4 mT
|
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 12x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.99 kg / 2.17 lbs
986.0 g / 9.7 N
|
| 1 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
688.0 g / 6.7 N
|
| 2 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
286.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 12x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.48 kg / 3.26 lbs
1479.0 g / 14.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.99 kg / 2.17 lbs
986.0 g / 9.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.49 kg / 1.09 lbs
493.0 g / 4.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.47 kg / 5.43 lbs
2465.0 g / 24.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 12x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.49 kg / 1.09 lbs
493.0 g / 4.8 N
|
| 1 mm |
|
1.23 kg / 2.72 lbs
1232.5 g / 12.1 N
|
| 2 mm |
|
2.47 kg / 5.43 lbs
2465.0 g / 24.2 N
|
| 3 mm |
|
3.70 kg / 8.15 lbs
3697.5 g / 36.3 N
|
| 5 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
| 10 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
| 11 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
| 12 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 12x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
OK |
| 40 °C | -2.2% |
4.82 kg / 10.63 lbs
4821.5 g / 47.3 N
|
OK |
| 60 °C | -4.4% |
4.71 kg / 10.39 lbs
4713.1 g / 46.2 N
|
OK |
| 80 °C | -6.6% |
4.60 kg / 10.15 lbs
4604.6 g / 45.2 N
|
|
| 100 °C | -28.8% |
3.51 kg / 7.74 lbs
3510.2 g / 34.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 12x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.10 kg / 37.69 lbs
5 795 Gs
|
2.56 kg / 5.65 lbs
2565 g / 25.2 N
|
N/A |
| 1 mm |
14.44 kg / 31.83 lbs
9 101 Gs
|
2.17 kg / 4.77 lbs
2166 g / 21.2 N
|
12.99 kg / 28.64 lbs
~0 Gs
|
| 2 mm |
11.95 kg / 26.34 lbs
8 279 Gs
|
1.79 kg / 3.95 lbs
1792 g / 17.6 N
|
10.75 kg / 23.71 lbs
~0 Gs
|
| 3 mm |
9.74 kg / 21.48 lbs
7 477 Gs
|
1.46 kg / 3.22 lbs
1462 g / 14.3 N
|
8.77 kg / 19.33 lbs
~0 Gs
|
| 5 mm |
6.27 kg / 13.82 lbs
5 997 Gs
|
0.94 kg / 2.07 lbs
940 g / 9.2 N
|
5.64 kg / 12.44 lbs
~0 Gs
|
| 10 mm |
1.92 kg / 4.24 lbs
3 320 Gs
|
0.29 kg / 0.64 lbs
288 g / 2.8 N
|
1.73 kg / 3.81 lbs
~0 Gs
|
| 20 mm |
0.22 kg / 0.49 lbs
1 131 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
142 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 12x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 12x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.40 km/h
(7.61 m/s)
|
0.20 J | |
| 30 mm |
47.07 km/h
(13.08 m/s)
|
0.58 J | |
| 50 mm |
60.77 km/h
(16.88 m/s)
|
0.97 J | |
| 100 mm |
85.94 km/h
(23.87 m/s)
|
1.93 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 12x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 12x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 650 Mx | 56.5 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 12x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.93 kg | Standard |
| Woda (dno rzeki) |
5.64 kg
(+0.71 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża nośność.
Ostrzeżenia
Obróbka mechaniczna
Proszek generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uszkodzenia ciała
Bloki magnetyczne mogą połamać palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Trwała utrata siły
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i siłę przyciągania.
Magnesy są kruche
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Reakcje alergiczne
Niektóre osoby ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może powodować zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Ryzyko połknięcia
Te produkty magnetyczne nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Zagrożenie życia
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić pracę urządzenia ratującego życie.
